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Chapter 1

Fluid flow

1.1 Incompressible and frictionless fluids

Liquids are almost incompressible. Even by applying large compressing force, the
density increase of the liquid is usually negligible. (The energy needed to compress
the liquid is, however, considerable.)

Gases are usually considerably compressible. However, low pressure gases may
by considered approximately incompressible if they flow through a channel and the
pressure difference between the two end points of the channel is small. For example,
if a blower drives air through a packed pipe with 1.2 bar at the inlet point of the
pipe, and atmospheric pressure at the outlet, then the air can be approximately
modelled as incompressible fluid.

The Low of continuity applies to incompressible fluids. Should the fluid flow
through a channel of cross section area A with volumetric flow rate W , then its
(average) speed u is expressed as

u =
W

A

where A may be measured e.g. in m2, W in m3/s, and u in m/s. This is valid
even if the channel is wider or narrower at some places. Thus, if the cross section
areas are A1, A2, and A3 at different places of the channel, then the speeds are,
respectively,

u1 =
W

A1
, u2 =

W

A2
, and u3 =

W

A3

The same relation can be expressed as the constancy of the flow rate in the channel
irrespectively to the actual cross section and the speed:

W = u1A1 = u2A2 = u3A3

3



4 1. Fluid flow

The Low of continuity is valid irrespectively to the presence or lack of friction,
but incompressibility and conservation of material are assumed. Should a leakage
alongway the channel be present so that the fluid can escape, the continuity is no
more valid.

Fluid friction can be neglected for practical purposes in some cases. These
include those cases where the friction forces are small compared to the other forces
acting on the fluid.

When neither friction nor compression is taken into account, and when the
gravitational acceleration is also considered constant, then the energy conservation
related to the fluid in motion can be expressed as

ρV u2

2
+ ρV gh + pV = constant

where V is a very small volume of the fluid, ρ is its (constant) density, g is gravita-
tional acceleration (appr. 9.81 m/s2), p is pressure, and h is height, measured from
an arbitrary level, of the point where volume V is situated. Here it is assumed
that no energy source or sink, acting the the moving fluid is present. The first
member is the kinetic energy of the fluid, the second one is its potential energy in
the gravitational field, and the third one expresses the energy needed to reach the
actual pressure from a state of zero pressure. (You can check that all the members
have energy dimension.)

Selection of the small V volume is arbitrary, and the equation can be divided
by it, giving the famous Bernoulli equation:

ρu2

2
+ ρgh + p = constant

This is the so-called pressure form of the Bernoulli equation; here all the mem-
bers are expressed in pressure dimension. The first member is the kinetic pressure,
the second one is the hydrostatic pressure, whereas the last one is the internal
pressure of the fluid.

By dividing the equation with ρ, the members are expressed in specific energy,
i.e. in energy related to unit mass:

u2

2
+ gh +

p

ρ
= constant

Now, if this equation is divided by g, then all the members are expressed in
height, also called head in engineering practice:

u2

2g
+ h +

p

ρg
= constant

Here the first member is the so-called kinetic head, the second one is the geodetic
head, and the third one is the pressure head.
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Considering two equal V volumes of the fluid, at different points, then the
pressures, speeds, and heights can be different, but the energy should remain the
same. Thus

u2
1

2g
+ h1 +

p1

ρg
=

u2
2

2g
+ h2 +

p2

ρg

and the other two forms can also be applied in the same way.
The head form of the equation is useful in solving problems considering pumping

and fluid flow in pipes, whereas the other two forms are useful in computing gas
compressors.

Measuring flow rate with continuity. Volumetric flow rate can be measured
by pressure difference developing between two different cross sections of the same
channel. Venturi tube, flow nozzle, and orifice are such devices. Considering hor-
izontal arrangement, or negligible height difference between the two points of the
pressure measurement (figure ***), the pressure form of Bernoulli equation is
reduced to

u2
1

2g
+

p1

ρg
=

u2
2

2g
+

p2

ρg

so that the measured pressure drop is

∆p ≈ p1 − p2 =
ρ

(
u2

2 − u2
1

)

2

This equality is just an approximating one because neither fluid friction nor con-
traction effects are taken into account.

Liquid outflow through a small hole. Consider a wide vessel filled with liquid
up to level h, with a small hole of cross section negligible compared to the cross
section of the vessel (figure ***). The head form of the Bernoulli equation is now

u2
level
2g

+ h +
pabove

ρg
=

u2

2g
+ 0 +

pbelow
ρg

The liquid loss of the vessel is negligible, thus ulevel ≈ 0 may be taken. If atmo-
spheric (or, generally, equal) pressure is present both above and below the vessel,
the equation is reduced to

h ≈ u2

2g

i.e.
u ≈

√
2gh

If the radius of the hole is r then the volumetric flow rate W is approximately
W ≈ r2π

√
2gh. This formula is due to Toricelli, the Italien physicist who first

measured atmospheric pressure. However, the actual flow is contracted more than



6 1. Fluid flow

the hole’s cross section. This apparently higher contraction is taken into account
by a so-called contraction factor α < 1: u2 (αA2) = u1A1. Thus,

W ≈ αr2π
√

2gh

A similar effect occuring in head flow meters such as orifice, Venturi-tube, and
flow nozzle, is taken into account by a so-called flow coefficient.

1.2 Fluid friction

When a plug with outer shape fitting to the inner shape of a channel moves inside
the channel, the inner wall of the channel expresses a force against the movement
of the plug. This phenomenon is called friction. When fluid flows in the pipe
then the friction expressed by the channel wall to the fluid particles near the wall
is mediated by the fluid to the particles farther from the wall. However, because
of the elasticity of the fluid, those particles farther from the wall move faster than
those drawn back by the friction of the wall. On the other hand, the particles
nearer the wall express a force against the faster movement of the particles next to
them. This is also a kind of friction, called internal friction of the fluid. This
phenomenon occurs when layers of the fluid move in different speed.

Bernoulli equation with friction. If friction cannot be neglected then the en-
ergy loss due to friction is to be taken into account. The ’energy loss’ is counted on
the hitherto considered forms of energy: kinetic, potential, and pressure. No energy
is lost in reality but these forms of energy are transformed to heat, i.e. internal
energy of the fluid. In case of isoterm systems, this heat energy is dissipated to the
environment through the wall. Thus, the energy balance (Bernoully equation) is

ρu2
1

2
+ ρgh1 + p1 =

ρu2
2

2
+ ρgh2 + p2 + ∆pf

or

u2
1

2g
+ h1 +

p1

ρg
=

u2
2

2g
+ h2 +

p2

ρg
+ hf

where index f refers to friction. ∆pf is pressure drop due to friction; hf is head
loss due to friction.

Newtonian fluids. The force F of friction is proportional to the surface or area
A at wchich the moving bodies or layers touch. Whe two such fluid layers slip on
each other (figure ***) then a unit force called shear stress is formed. (Stress and
pressure have the same dimension.) Newtonian fluid is a simplest model describing
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this stress. A fluid is Newtonian if the shear stress is proportional to the differential
of speed perpendicular to the surface:

Fz

Az,y
= −η

duz

dx

Here z, y, and x are perpendicular directions, uz is the speed component along
direction z, Fz is the force acting in direction z, and Az,y is a planar surface
perpendicular to direction x. η is called dynamic viscosity, and is independent of
direction in case of a Newtonian fluid. On the other hand, η is a property specific
to the actual material, and depends on temperature and pressure.

Non-Newtonian fluids. Quite many fluids may be considered Newtonian, or
may be approximately modelled this way. However, there are fluids behaving in
different ways (figure ***).

Bingham-plastic fluids can be described by equation

F

A
=

(
F

A

)

0

−B
duz

dx

Such fluids are dense suspensions, pastes, sludges. B is called apparent (or plastic)
viscosity, (F/A)0 is called yield limit.

Pseudoplastic fluids have concave stress curve against speed slope, and can be
approximated by the Ostwald-de-Waele model:

F

A
= −B′

(
duz

dx

)n

(n < 1). The slope of the curve decreases as the speed slope increases. Such
materials are e.g. polymeric solutions, melts, dyes, etc.

Dilating fluids have convex curve, with the same model but n > 1. (At n = 1
the Newtonian fluid is modelled.) Such fluids are dense suspensions like wet sand,
dense dust in water.

There are other classes like tixotrop fluids whose apparent viscosity depends on
the time of the shearing effect as well, or the Maxwellian fluids which are flexible
like plastics, bitumens, pastas, gums.

1.3 Laminar flow of Newtonian fluid

Consider flow of a Newtonian fluid in a straight pipe with circular cross section
of internal diameter D , radius R = D/2. Experience shows that the fluid moves
faster in the centerline of the pipe than near the wall. If the flow is not too fast
(what this ’too’ means turns out in the next section) then one may suppose that
circular layers of the fluid slip over each other, as is shown in figure ***. We
speak about laminar flow or streamline flow pattern in this case. The fluid is
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pressed through the pipe by the pressure difference p1−p2 between the ends of the
pipe of lenght L. Any central rod of radius r is pressed by the force acting on its
cross section r2π, whereas the shearing stress measured at its outer circular surface
acts on its superficies 2rπL. The fluid moves with constant average speed u and
constant local speed v(r) in direction z (the axis) if the sum of the two forces is
zero:

∆pr2π + η
dv

dr
2πrL = 0

Thus
dv

dr
= − ∆p

2ηL
r

and
vmax∫

0

dv = − ∆p

2ηL

r∫

R

dr

which then gives the axial speed profile as

v =
∆p

4ηL

(
R2 − r2

)

From here
vmax =

∆p

4ηL

at r = 0 (the axis), and

v(r) = vmax

(
1− r2

R2

)

The volume flowing through (per time) the cylindric layer at radius r and width
dr is v(r)2rπdr, thus total flow rate is

W =

R∫

0

v(r)2rπdr =

R∫

0

∆p

4ηL

(
R2 − r2

)
2rπdr

Integration gives the well-known Hagen–Poiseuille equation:

W =
∆pπ

8ηL
R4

From here, the average speed u is

u =
∆p

8ηL
R2 =

vmax
2

The local speed is symmetric to the axis, and of parabolic shape, shown in
figure ***. Note that the pressure difference ∆p needed to drive the flow is
proportional to the speed u:

∆p =
8ηL

R2
u =

32ηL

D2
u
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1.4 Turbulent flow

The pressure difference ∆p needed to drive the flow is proportional to the speed u
if u is small, but becomes quadratic in u at higher speed, according to experience.
The general shape of this dependency for Newtonian fluid is shown in figure ***.
The function has branches according to roughness of the pipe wall. This quadratic
behaviour is due to the so-called turbulent flow pattern forming at higher speed.

The so-called Reynolds experiment is shown in figure ***. A narrow thread
of ink is slightly widened by diffusion as it is carried away by a slow stream of
water in the glass pipe of diameter D. The laminar (streamline) flow is validated.
By gradually increasing the flow rate of the carrying stream, the pattern does not
change until a certain flow rate where it suddenly and radically changes. The thread
of the ink is breaken so much that the whole cross section becomes coloured right
at the point of entering the pipe. There is a strong turbulence in the flow. In this
case the speed profile can be approximated by

v(r) = vmax

(
1− r

R

) 1
7

(see figure ***).
By experiments, for Newtonian fluids, laminar flow pattern is prevalent under

u < 2300
η

Dρ
≡ 2300

ν

D

where ν is kinetic viscosity. Thus, a dimensionless number, called Reynolds num-
ber can be formed as

Re =
Duρ

η
=

Du

ν

so that at Re < 2300 the flow is laminar. Above this critical Reynolds number,
the flow pattern may be turbulent, and the higher speed involves higher chance
to have turbulency. Above 4000, the flow is most probable turbulent, although
laminar flow has been obeserved even at Re > 10000. The three-dimensional
differential equations describing the flow of the fluid have alternative solutions,
and thermodynamic stability criterions can be applied. However, each solution is
stable in a small neighbourhood, and whether laminar flow is maintained depends
on how much random disturbance is applied on the system.

Friction can be modelled as follows. The driving force needed to overcome the
friction is:

Fdriv = ∆pf
D2π

4
The friction force is proportional to the rubbed surface DπL and the specific kinetic
energy 1

2ρu2:

Ffric = 4f (DπL)
ρu2

2
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Here f is a so-called friction factor, and the multiplier 4 is arbitrarily introduced.
In steady flow the two forces must be balanced (equal) so that

∆pf = f
L

D

ρu2

2

This friction factor definition is used by Blasius and Darcy. The friction factor has
earlier beed defined by Fanning as

∆pf = 4f
L

D

ρu2

2

because in that case f expresses a ratio of shear stress to the kinetic energy. One
has to be careful to check which definition is applied in the actual equation or plot
found in the reference books or articles.

Friction factor f is used to describe how friction depends on speed. In prac-
tice, however, friction depends on the roughness of the wall, as well. At low Re
numbers (laminar flow) f can be expressed using the Hagen-Poiseuille equation.
Comparing the equations, one gets

flaminar =
64
Re

At turbulent flow, dependence of f on Re and roughness is determined by
experiments. Roughness is measured in length as unevennes or wrinkle k of the
wall, and is usually related to the diameter of the pipe. Thus, f is expressed as
a function of Reynolds number Re and relative roughness k/D. The Moody plot,
applying logarithmic scale, is usually applied in practice for Newtonian fluids (see
Fig. 1.1). At well developed turbulency, Re ≥ 4000, the plot may be approximated
as

1√
f
≈ −2 lg

(
2.51

Re
√

f
+

1
3.72

k

D

)

This equation should be solved for f by iterative calculation. The first estimate is
taken as

f0 = 0.25
[
lg

(
5.74
Re0.9

+
1

3.72
k

D

)]−2

and is corrected step by step according to

fi+1 =
[
−2 lg

(
2.51

Re
√

fi

+
1

3.72
k

D

)]−2

The curves approach a horizontal line at the limit of high Re numbers; here f
does not depend on Re, and thus ∆p becomes exactly quadratic in u. This region
can be approximated as

1√
frough

≈ −2 lg
(

1
3.72

k

D

)
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Figure 1.1: Friction factor in straight circular pipes
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This is approximately valid if

Re > 200
D

k

1√
f

The branches of roughness are limited from below by a line of perfect smooth-
ness. However, no perfectly smooth wall exists and the pressure drop approaches
quadratic dependence on u at higher Re numbers in all practical cases.

This line of perfect smoothness was approximated by Blasius as

fsmooth ≈ 0.3164
Re0.25

However, this is a straight line in the logarithmic plot, whereas the original line is
a curve.

Moody plots are different for flow along planar walls.

For pipes with cross section not circular, equivalent diameter De, instead of D,
may be substituted in the equations. Equivalent diameter is defined as

De = 4
A

C

where A is the cross section area and C is the wetted circumference. For circular
pipes De = D.

For example, a rectangular cross section with sides a and b has cross section
area is A = ab, circumference is C = 2(a + b), thus the equivalent diameter is

De =
2ab

a + b

Another example is the annular channel. This occurs when the fluid flows in the
outer part of a coaxial double pipe (see figure ***). Let the two radii be R1 < R2,
then the cross sectional area is A =

(
R2

2 −R2
1

)
π, the wetted circumference is

C = 2 (R2 + R1)π, thus the equivalent diameter is

De =
2

(
R2

2 −R2
1

)

(R2 + R1)
= 2 (R2 −R1)

1.5 Hydraulic similarity and dimensional analysis

Newton’s low of motion (force equals mass times acceleration) can be applied to
moving fluids as well. Instead of considering the general case when acceleration is
present, here we deal with the stationer case only, i.e. when the fluid moves with
constant speed. No acceleration occurs when the algebraic sum of all the forces
acting on the fluid is zero. The forces to be counted are inertia of the moving fluid,
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the pressing force, the counteracting friction force, and gravity if present in the
direction of the flow. An energy term can be attached to each of these forces. The
energy terms related to unit volume can be formulated by variables as

1
2
ρu2, ∆p, η

dux

dz
, ρgh

For a general case, dux

dz can be considered by a ratio of u to a characteristic
lenght D: u

D . Two flows (in two different arrangements) can be considered similar
(or congruential, or isomorhic) if the ratios of these members are equal. Thus,
dimensionless criteria are formed by relating one member to the other. The most
frequently applied similariry criteria are:

Reynolds number: Re =
inertia
friction

=
Duρ

η
=

Du

ν

Euler number: Eu =
pressure
inertia

=
p

ρu2

Froude number: Fr =
inertia
gravity

=
u2

gh

Models related to flow should be consistent in dimensions. When a relation
between the variables is expressed explicitly to zero (0 = f(x, y, z . . .), the function
should give a dimensionless value. Assuming a polinomial form with variables
∆p, u, D, η, ρ, g, and some other characteristic length L, i.e.

Π = (∆p)a
ubDcηdρegfLh

where Π is a dimensionless expression, the following equation should be valid

1 =
(

M
LT2

)a (
L
T

)b

Lc

(
M
LT

)d (
M
L3

)e (
L
T2

)f

Lh

where L, M, and T stand for dimensons of Length, Mass, and Time, respectively.
Thus, the following linear equations must be satisfied by the exponents:

for T: 0 = −2a− b− d− 2f

for M: 0 = a + d + e

for L: 0 = −a + b + c− d− 3e + f + h

b and e are expressed from T and M:

b = −2a− d− 2f

e = −a− d
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and substituted to L, and the c is expressed from L:

c = −d + f − g

so that the b, e, and c can be discarded:

Π = (∆p)a
u−2a−d−2fD−d+f−hηdρ−a−dgfLh

Now the constituents can be rearranged according to single common exponents:

Π =
(

∆p

u2ρ

)a (
η

uDρ

)d (
D

u2g

)f (
L

D

)h

i.e.

Π = EuaRe−aFr−f

(
L

D

)h

Thus, any of the dimensionless numbers can be expressed as a polynomial of the
others and some geometric ratios. The exponents can then be determined by fit-
ting them to experimental data. Such a dimensional analysis followed by data
fitting can be utilized to obtain information characteristic to geometrically similar
arrangements. Once such a characteristic relation is measured and fitted, it can
be used to predict the behaviour of other systems that are similar to the mea-
sured one geometrically. Any change in materials properties (viscosity, density)
and speed is absorbed in a shift in the actual values of the dimensionless numbers,
but the relation remains unchanged. The Moody plot shows just one such a general
relation.

Another example is the flow coefficient α of a given geometry orifice as function
of Re. The flow coefficient is tabulated in reference books, and depends on the
geometry. Such a dependence is shown in Fig. 1.2. Here m = d

D where D is the
pipe’s internal diameter, and d is the orifice diameter. The volumetric flow rate
can be calculated as

W = αε
d2π

4

√
2∆p

ρ

where ε is volumetric contraction factor, ε = 1 if the fluid is incompressible. This
particular plot is valid if the taps are made before the orifice with D and after the
orifice with 1

2D.
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Chapter 2

Sedimentation (settling)

2.1 Drag coefficient

The fluid collides with the body over a cross section area Acoll of collision and rubs
or chafes the the passed surface Afric. The force exerted by the collision can be
modelled as

Fcoll = Acoll
u2ρ

2
whereas the friction force at the rubbed surface can be modelled as

Ffric = fAfric
u2ρ

2

The total force is called drag force because the fluid drags the body:

Fdrag = Fcoll + Ffric

However, measuring (and even defining) the rubbed surface is difficult in practice.
Thus, the collision surface is first used instead of the passed one, and a modified
friction factor f ′ is applied as

Ffric = fAfric
u2ρ

2
= f ′Acoll

u2ρ

2

so that the two members can be added

Fdrag = (1 + f ′)Acoll
u2ρ

2

Finally, a so-called drag coefficient CD is defied as

Fdrag = CDAcoll
u2ρ

2

17
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CD can be experimentally determined as a function of settling Reynolds
number

Re =
duρ

η

where d is a characteristic lenght of the body. The actual shape of this function
depends of the shape of the body. Figure *** shows this function for spherical
particles (solid balls) of diameter d, and for straight rods of circular cross section
with diameter d, in case when the fluid flow is perpendicular to the rod.

Stokes region. Stokes determined, in 1851, the drag force exerted on a ball by
fluid of dynamic viscosity η and moving with low speed u as

Fdrag = 3πηdu

The same equation can be derived by taking the experimentally measured

CD =
24
Re

at low Reynolds numbers (Re < 0.6):

Fdrag =
24η

duρ

d2π

4
u2ρ

2
= 3πηdu

In practice, the behaviour can be considered laminar up to Re ≤ 4.
Note that in this laminar region Fdrag is proportional with d and u, and does not
depend on ρ.

Newton region. In the region of developed turbulency (at 800 < Re < 2 · 105),
named after Newton, the drag coefficient is independent of the Reynolds number,
and can be taken as CD ≈ 0.44. Thus,

Fdrag ≈ 0.44
d2π

4
u2ρ

2
≈ 0.1726d2u2ρ

Note that in this turbulent region Fdrag is proportional with d2, u2, and ρ.

Transient region. In between laminar flow and developed turbulency the drag
coefficient may be approximated as

CD ≈ 18.5
Re0.6

≈ 12√
Re
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Limits of validity. At very high speed, sound velocity effects may influence the
behaviour of the fluid. Validity of the Stokes region is limited to the scale where
the fluid may be modelled as a continuum. Thus, the Stokes region is valid only if
d > Lfree where Lfree is the average free pathlength of the molecules constituting
the fluid. Below this scale, the particles behave according to the Brownian motion.
At even lower scale, commensurable with the molecule lenght, diffusion occurs
instead of Brownian motion.

Shape factor. Behaviour of non-spherical particles can by approximated by the
relations determined to spherical particles but applying so-called shape factor φ
as a multiplier of CD:

CD = φCD,spherical

2.2 Terminal velocity

Balance of forces. There are three forces acting on a particle moving in a stand-
ing fluid or on a standing particle around which the fluid flows. For brevity, we
consider a heavy particle falling in a steady fluid. The gravity force (commonly
called the weight) acts downwards FW = mpg = V ρpg where index p refers to
the particle, V is its volume, m is mass, ρ is density, and g is the gravitational
constant. Buoyancy force acts against this weight, i.e. upwards and, according to
Archimedes, is FB = V ρfg where index f refers to the fluid. The difference of
these two forces is called the Archimedian weight: FA = V (ρp − ρf ) g. When the
particle falls, however, there is a third force acting against its move: the drag force
FD. Acceleration of the particle downwards, according to Newton is:

dmpu

dt
= FA − FD

Whereas FA is determined by the density difference and the volume of the particle,
and is thus constant, the drag force counteracting the fall increases with the speed of
falling. As a result, small particles very soon reach a speed at which the drag force
just balances the Archimedian weight, and the speed stops increasing. This speed
is called terminal velocity of falling. In this limit the forces are in equilibrium,
i.e.

dmpu

dt
= V (ρp − ρf ) g − CDAcoll

u2ρf

2
= 0

The terminal velocity can be expressed from this balance.

Spherical particles. Since for spherical particle (little ball or globe)

Acoll =
d2π

4
; V =

d3π

6
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the balance is
d3π

6
∆ρg = CD

d2π

4
u2ρf

2
and the speed can be expressed as

u2 =
1

CD

4
3

∆ρ

ρf
gd

u =

√
1

CD

4
3

∆ρ

ρf
gd

Stokes region. Here

CD =
Re

24
=

24η

duρf

and thus
u2 =

duρf

24η

4
3

∆ρ

ρf
gd

from where u can be expressed:

u =
∆ρg

18η
d2

Note that u is proportional to d2 and ∆ρ
η .

Newton region. Here CD ≈ 0.44 and thus

u ≈ 1.74

√
∆ρ

ρf
gd

Note that u is proportional to
√

d and
√

∆ρ
ρf

.

Transient region. Here, applying the square root approximation,

u ≈ ∆ρ

9√ηρf
gd

Note that u is approximately proportional to d.

2.3 Calculations

Given the material properties and the characteristic d, the expected terminal speed
can be computed. Conversely, d can be computed from a measured u. Use of the
CD ←→ Re plot is, unfortunately, not straightforward because both u and d are
needed to compute Re. Thus, in principle, iterative calculation is suggested.
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Re Fu Fd

4 2.2 0.18

800 20 12

2 · 105 2000 70

Table 2.1: Settling regions’ criteria

For spherical particles, this difficulty can be avoided by expressing Re2CD and
Re
Cd

, or their cubic root. Namely

(
Re

CD

) 1
3

=
u

Bν
≡ Fu

(
CDRe2

) 1
3 = Bd ≡ Fd

where
B =

4
3
g
ρf∆ρ

η2

Here B depends on the material properties only, Fu depends on B and u only, Fd

depends on B and d only. Based on these new variables, a generalized settling chart
can be constructed as shown in figure ***. This figure is applicable to compute
u from d or d from u without iteration.

Even this graphical procedure can be avoided and substituted by an approx-
imation because Fu, Re, and Fd depend on each other monotonically increasing.
Thus, the critical Re numbers can be projected to Fu and Fd as shown in Table
2.1. The explicite formulas given below are approximations only. In practice, the
drag force is greater than that computed with the formula given to the laminar
region if Re > 1. The formula given to the transient region assigns a straight line
in the logarithmic plot, whereas the measured data follow a curve.

Stokes region:

Fu =
F 2

d

24
Fd =

√
24Fu

(
Re =

√
24F 3

u Re =
F 3

d

24

)

Newton region:

Fu ≈
√

Fd

0.44
Fd ≈ (0.44Fu)2

(
Re ≈ 0.44F 3

u Re ≈
√

F 3
d

0.44

)

Transient region:

Fu ≈ 3

√
F 2

d

125
Fd ≈

√
125F 3

u

(
Re ≈ 3

√
144F 2

u Re ≈ F 2
d

3
√

144

)
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Co–settling. Which particles fall together? I.e., which particles fall with the
same speed?

If the particles are of the same kind, i.e. each have the same density (ρ1 = ρ2),
then the equal particle size (d1 = d2) fall together.

If the particles are different in density (ρ1 6= ρ2) then different size particles
(d1 6= d2) fall together.

In Stokes region (laminar flow) u1 = u = u2 if

ρ1 − ρf

18η
gd2

1 =
ρ2 − ρf

18η
gd2

2

i.e.
ρ1 − ρf

ρ2 − ρf
=

d2
2

d2
1

Thus, if ρ À ρf then
ρ1

ρ2
≈ d2

2

d2
1

In Newton region (turbulent flow) u1 = u = u2 if
√

ρ1 − ρf

ρ1
d1 =

√
ρ2 − ρf

ρ2
d2

i.e.
1− ρf

ρ1

1− ρf

ρ2

=
d2

d1

Settling in mass. Consider figure *** where e.g. sand is falling in water in a
test tube. The settling is slower in this case than when a single particle falls in a
wide space. This is so because the liquid pressed out of the tube is forced to flow
upward, and thus exerting a drag force higher than if it were standing. Or, one can
consider this situation as falling with a greater speed than that related to the wall
of the tube. Really, each particle moves against the water with its speed along the
wall plus the speed of the water upward.

The speed u0 computed till now is valid only if the particle falls alone in an
arbitrary wide cross section of fluid. This is expressed as terminal velocity in
infinite space. This should be approximately valid for the speed relative to the
fluid; thus one may write u0 = u+ucounter where u is the speed related to the wall,
and ucounter is the speed of the fluid counterflowing (moving upward). This simple
picture is, however, modified by the flow pattern or Re number different from which
would be experienced otherwise. There are some approximating empirical formulas
for calculating the speed, like

u ≈ u0

1 + 2.4 d
D

or u ≈ u0

[
1− d

D

]2.25
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A special case of such a situation is the Höppler viscosimeter. This is a usually
slant straight glass tube filled with liquid to be measured and a ball almost but not
as wide as the internal channel. The ball rather slowly falls down in the tube, and
the falling speed can be used to determine the viscosity of the fluid.

Another special case is suspension settling. Suspensions are characterized with
a suspension percent s as

s =
solid volume
total volume

· 100%

Then the actual speed can be expressed as u ≈ ϕu0 where this ϕ factor is plotted
against s as in figure ***.

Settling in centrifugal field. If the gravity is not strong enough to separate
in an acceptable speed the solid from gas or liquid, or liquid drops from gas, or
separate two liquid phases, then the driving force of settling can be increased by
centrifuge.

Denote the rotation number [turns/s] by n, then the angle speed expressed in
radians is

ω = 2π

[
1

turns

]
· n

[
turns

s

]
= 2πn

[
1
s

]

The centrifugal acceleration is

gc ≡ ω2r = 4π2n2r
[m
s2

]

For characterizing the centrifuge, one may apply a so-called centrifuge index Z:

Z ≡ gc

g
=

ω2r

g
=

4π2

g
n2r ∼ n2r

where g is the gravitational acceleration (≈ 9.81 m/s2). One may say ’how many
g-s are reached’.

In Stokes region: u = Zu0; in Newton region: u =
√

Zu0.

2.4 Capacity

Capacity of a settling tray. Consider a rectangular channel as is shown in
figure *** with lenght L, width b, and height H. Its cross section area Across =
bH; its base area is A = Lb. Imagine a tray below the base, with any depth.
The gas flowing through the channel carries solid particles (e.g. dust in gas). A
distribution of smaller and larger particles is usually carried; settling out a fraction
of heavier particles is tageted. This fraction is characterized with their smallest
terminal falling velocity u0.
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Capacity of this settler is defined as the maximum of flow rate W at which all
the targeted particles fall down to the tray while the fluid flows through.

From all the particles belonging to the targeted fraction, particles with terminal
falling velocity u0 entering the channel at height H need the longest time to settle
out, namely

ts =
H

u0

The speed of the gas in the channel is, by the low of continuity,

u =
W

Across
=

W

bH

Thus, the residence time of the fluid in the channel is

τ =
L

u
=

LbH

W

All the targeted particles settle out if ts ≤ τ , i.e. if

H

u0
≤ LbH

W

W ≤ (Lb)u0 = Au0

Thus, the capacity of such a settling channel is proportional to its base area and
nothing else.

Capacity of a settling centrifuge. As a result of the high field, the flow is
normally laminar. In the Stokes region

u0 =
∆ρd2

18η
gc

and the field gc depends on the turning rate gc = rω2 = 4π2n2r where r is the
actual distance from the turning axis of the centrifuge. Thus, the field depends on
the actual radius which is smaller than the radius R of the drum, and changing
during the operation because the particles gradually fill in the drum as is shown in
figure ***.

Specifying two radii r1 and r2 as start and end points, the time needed to reach
from start to end is

T =

T∫

0

dt =

r2∫

r1

1
u(r)

dr =
18η

∆ρd24π2n2

r2∫

r1

1
r
dr =

18η

∆ρd24π2n2
ln

r2

r1

If V denotes the volume that can be carried on the centrifuge in one charge the
the capacity, i.e. the maximum flow rate W is

W =
V

t
=

∆ρd24π2n2

18η ln r2
r1

V =
(

∆ρd2g

18η

) (
4π2n2V

g ln r2
r1

)
≡ u0 ·Ae
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where

Ae ≡ 4π2n2V

g ln r2
r1

is the settling area equivalent to a gravitational settler (a settling tray).

2.5 Sedimentor devices

Gases

For settling out dust from gases, a simple gas chamber are shown in figure ***.
For settling out a large amount, tray chambers are applied as shown in figure

***.
There are several versions of chambers based on collision and sudden redirection

of the gas, shown in figures ***.
Similar principles are applied in drop settlers (figures ***). Special slanted

and curved packings are also applied. Here the gas flows upward, and the liquid
drops cannot follow the turns of the gas but slow down on the surface and then
slip downward.

Cyclon is shown in figure ***. The gas flows in tangentially. Whereas the gas
turns and flows out in th chimney, of the smallest resistance, the heavier particles
(ρp ∼ 1000ρf ) are by their inertia pressed to the wall; there they loose the kinetic
energy, and slowly slip down.

Liquids

Rheo scrubbers are applied to separate lighter and heavier solid pieces. The solid
mixture moves in a channel, and the Rheo units are placed under the channel in
a series (figure ***). Washing liquid (water) is introduced to the scrubber to lift
up the lighter solid; the heavier solid falls down.

Dorr thickener is a conical device (figure ***) for settling large amout of
sludge. They are usually very wide, up to diameter 200 m. The wall is made of
concrete for such a case, used for municipal sludge or minery. A scraper moves
slowly (e.g. 0.02 turn/min) at the bottom. Fresh water is fed near the turning axis
at the top, the sludge is removed at the bottom, and cleaned water is removed as
overflow at the side.

Hydrocyclons are narrower and longer than cyclons. The liquid is introduced
with high speed to reach large field because the density difference between the
particles and the liquid is usually not high. For example, if the liquid is introduced
with speed u = 20 m/s to a hydrocyclon on radius r = 0.4 m (a little wider than
two feet), the the centrifugal field is

gc =
u2

r
=

400m2/s2

0.4m
= 1000

m
s2
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Considering the gravitation as g ≈ 9.81 ≈ 10m
s2 , the centrifugal index is Z ≈ 100.

Several hydrocyclons are applied in series for enhancing the efficiency of settling,
but their number cannot be many because of the great loss of energy (pressure drop
in the hydrocyclon).

Centriguges

Several kinds of centrifuges for separating suspensions and emulsions are knowm.
Some of them (Chamber fuges, tray fuges) are shown in figures ***. Superfuges
are longer and narrower devices.



Chapter 3

Packed columns and
fluidization

Flow through tubes or columns packed randomly with solid pieces, or with struc-
tured packings, are applied in several unit operations. Such operations are those in
which large phase contacting surface is to be provided in a given volume, such as
adsorption, absorption, distillation, heterogeneous catalysis, as well as operations
where the process material constitutes the packing, such as drying or drog extrac-
tion. Knowledge on the resistance against the flow through such packed tubes is of
great importance.

Fluidized beds are also of great importance in drying, heterogeneous catalytic
processes, and can even be used for absorption. A related field is pneumatic con-
veying.

3.1 Characterization of the packing

Consider a vertical tube (column) as shown in figure ***, with internal diame-
ter D, filled with packing up to height L over a horizontal grid. The following
parameters are used in the discussion:

27
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A (total) cross section area (of the empty column), A =
D2π

4
V (total) volume of the packing, V =

D2π

4
L

Vfree free volume, (not occupied by the solid particles)

ε voidage, ε ≡ Vfree

V
Afree free cross section area (not blocked by particles)
V1 volume of a single particle
N the number of particles
Vp total solid volume, Vp ≡ N · V1 = V − Vfree

ρ1 density of a particle
ρb density of the bed (total solid mass / total volume)
A1 surface of a single particle

ω1 specific surface of a single particle, ω1 ≡ A1

V1
ω specific surcafe of the packing (total surface / total volume)

By average,
Afree

A
=

Vfree

V
= ε

In the same way,

ρb =
N (ρ1V1)

V
= ρ1

Vp

V
= ρ1 · (1− ε)

ω =
N ·A1

V
= (1− ε)ω1

3.2 Flow and pressure drop

Speed of the flow with flow rate W throught an empty column is denoted by and
calculated as

u0 =
W

A

The actual speed in the narrow channel of the packing, by the low of continuity, is

u =
W

Afree
=

W

ε A

Thus, the actual speed is
u =

u0

ε

and the Reynolds number is

Re =
De u ρ

η
=

De u0 ρ

ε η
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For computing the equivalent (hydraulic) diameter, the internal circumference
of the column (the tube), D2π, may be neglected beside the wet circumference of
the packing:

De = 4
Afree

circumference of packing
= 4

Vfree

N ·A1
= 4

εV

ωV

Thus, the equivalent diameter generally is

De = 4
ε

ω
= 4

ε

(1− ε)ω1

and the Reynolds number is

Re = 4
u0 ρ

(1− ε) ω1 η

For spherical particles (balls) with diameter d, the specific surface is

ω1 =
d2π
d3π
6

=
6
d

Substituting this value to ω1, one gets for spherical particles:

De,sph =
2
3

ε

1− ε
d

Resph =
2
3

d u0 ρ

(1− ε) η

For practical applications, however, simply

Rep =
d u0 ρ

η

is also used for packings, and one has to check which definition is applied in an
empirical or approximating formula.

Laminar flow

Substituting into the Hagen–Poiseuille low

∆p =
32 L η u

D2
e

one gets

∆psph = 72
(1− ε)2

ε3

L η u0

d2
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However, Blake and Kozeny empirically found

∆psph = 150
(1− ε)2

ε3

L η u0

d2

The empirically larger coefficient can be explained by considering dense spherical
packing and, therefore, strong curvature of the channels in the packing. According
to experiments, the Blake–Kozeny equation is valid if ε < 0.5 and Rep < 10.

Turbulent flow

The general formula of pressure drop is

∆p = f
L

De

u2 ρ

2

One gets by substitution

∆p = f
3
2

(1− ε)
ε2

u2 ρ

2
L

d
= 0.75 f

(1− ε)
ε3

u2
0 ρ

L

d

Experiments, however, show the effect of the curvature of the channels in the
packing, and the Burke–Plummer equation can be used instead:

∆p = 1.75 f
(1− ε)

ε3
u2

0 ρ
L

d

This is valid if Rep > 1000.

General case

A unified approximating formula is given by Ergun:

∆p = u2
0 ρ

(1− ε)
ε3

L

d

[
150 (1− ε)

Rp
+ 1.75

]

or, in a dimensionless form

∆p

u2
0 ρ

= Eu =
(1− ε)

ε3

L

d

[
150 (1− ε)

Rp
+ 1.75

]

3.3 Fluidized bed

Consider a vertical column partially filled with packing resting on a grid, and fluid
is driven through it from below. By increasing the flow rate, the resistance, and
thus the pressure drop, increases monotonically. However, if the packing is not
restricted from above by another grid then the pressure drop stops increasing at
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a certain flow rate, and remains constant in a wide range of flow rate above this
value. Instead of an increase in the pressure drop, the packing floats over the grid,
and its height increases with the flow rate. It is more instructive to consider the
speed u0 instead of the flow rate W . The fluidization is maintained between a lower
speed u?

0 and a higher speed u??
0 . Meanwhile the height L of the packing in not

constant. For general discussion, an L0, so-called height of dense packing, can
be introduced as L0 = ε L; this remains constant as a property of the system. L0

can be imagined as the height the packing would take if it were melted. A general
fluidization plot is shown in figure ***.

When the fluidization starts can be calculated by equilibrium of forces. When
the fluid does not move (u0 = 0), the packing presses the grid with its Archimedian
weight: GA = (L0 A) (ρ1 − ρ) g, and the pressure on the grid is pgrid = GA

A =
L0 ∆ρ g This pressure is contstant; it depends on the material properties only.
The pressure drop one can measure between the two ends of the packing can be
interpreted as the drag force related on the total cross destion: ∆p = Fdrag

A . This
drag force, and thus the pressure drop ∆p can be calculated e.g. by the Ergun
equation.

As u0 increases, the pressure drop and the drag force also increases and thus
the pressure on the grid from above decreases. At some speed u?

0 the two forces
just balance each other, ∆p = pgrid, and the packing floats.

According to Newton’s low, the packing’s particles ought to accelerate upward
and fly out from the column if u0 > u?

0. However, it is not u0 what actually
is involved in the drag force but some speed u in the free cross section inside
the packing; this is u = A

u0
. As soon as the packing starts floating, and lifts

up, its particles arrange looser than earlier. The packing bed becomes higher (L
increases), and thus Afree and ε also increase. The packing opens up just so much
as to maintain the balance of forces. With a smaller ε it would fly out from the
column because the drag force were higher than the Archimedian weight; with a
higher ε it would fall down because the Archimedian weight were higher than the
drag force. Over all the range of fluidization, the drag force is just equal to the
Archimedian weight; this is why the pressure drop is constant.

This sedimentation balance can be maintained as far as there is some way to
loose up the packing, i.e. as far as ε does not approach 1. When there is no
more but a single particle in a cross section in average, the cross section cannot be
increased without carrying out the particles by the fluid. This happens above u??

0 .
Just at u??

0 , the single particles float in the fluid; thus u??
0 is the terminal speed of

settling in infinite space, and can be calculated accordingly.
The Ergun equation is just an approximation; experimental plots can be con-

structed for particular packings. For avoiding iterative graphical procedure, f Re2

is plotted against Re because f Re2 does not depend directly on u0. Along with
defining Rep as above, a modified fp is also usually defined as

2
3
f

1
ε3
≡ 4fp
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so that

∆p = f
3
2

(1− ε)
ε3

u2
0 ρ

2
L

d

becomes

∆p = 4fp (1− ε)
u2

0 ρ

2
L

d
= 4fp

u2
0 ρ

2
L0

d

In balance of forces

4fp
L0

d

u2
0 ρ

2
= L0 ∆ρ g

so that
fp =

∆ρ g d

2ρ u2
0

and
fp Re2

p =
g ∆ρ d ρ

2η2

A chart for fpRep against Rep with varying ε voidages for spherical particles
in air is shown in figure ***. Such a chart is applicable for modelling fluidization
only. For a given speed u0 and voidage ε, first fpRep can be read, and then it
can be divided by Rep to obtain fp, and then computing ∆p. The voidage of the
packing in still (before fluidizing) can be measured, and thus u?

0 determined. But
the chart is valid all over the fluidization range.

Inhomogeneous and homogeneous fluidization. The fluidization can be in-
homogeneous, i.e. there are channels in the bed, and the bed is pulsing, if Fr > 1.
This is usually the case if the fluid is gas. At Fr < 1, homogeneous fluidized bed
is experienced; this is usually the case is the fluid is liquid.

Hysteresis. When particles with irregular shape are first fluidized, the pressure
drop first increases a little bit higher and then drops back to the constant pressure
drop of the fluidization range (figure ***). When afterwards decreasing the speed,
this bump is not expreienced; neither can it be experienced in the second fluidization
experiment. This phenomenon can be explained by rearrangement of the particles
along with the flow.

Carry out. Above u??
0 , the particles are carried over by the fluid. Considering

a very long pipe, such a situation is pneumatic conveying, and the pressure drop
increases with u0. Considering a short column, the particles are carried out from
the system, and the pressure drop decreases in time until the column becomes free
of the packing, and the pressure drop of the empty column is experienced. This
empty column pressure drop then again increases with u0.
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Filtration

4.1 Batch arrangement

Filtration is separation of solid particles from a fluid by letting the fluid through
narrow capillary channels which prevent the solid particles to go through. The
basic arrangement of filtration is shown in figure ***. The filter itself is a channel
with a grid that merely serves as a holder for a filter cloth spanned on it. The
suspension is fed to the channel from the cloth side. The clear fluid free of the
solid particles flows through to the other side, and is called the mother liquor or
filtrate.

The solid particles are kept in the input side. The potential of the cloth to keep
back the solid particles is usually small. However, once a layer of retarded solids is
formed on the cloth, this sludge layer performs most of the effect of filtration. The
capillary channels in this so-called filter cake prevents the particles from going
through.

On the other hand, the filter cake gives rise to a large resistance against the flow
of the mother liquor as well. The force to drive the flow through the cake can be
provided by gravitation, pressure on the feed side, vacuum on the filtrate side, and
their combination. Instead of gravity, higher field can be achieved by centrifuge.

Filtering rate W is defined as the flow rate of the filtrate, and is an important
industrial characteristic of the process. Filtering velocity is u = W

A where A
is the surface of the filter (grid, or the internal diameter of the channel, in our
example). This rate or velocity depends on the resitances forming in the device.

There are three main constituents of resistance: (1) ∆pd of the filter device
itself together with all the fittings, (2) ∆pf of the filter cloth, and (3) ∆pc of the
filter cake. The pressure drop caused by the device itself can usually be neglected,
and is lumped with the resistance of the filter cloth to give a resistance of media:
∆pm ≡ ∆pd + ∆pf . Even ∆pm may be neglected comparing to ∆pc, but this
member is sometimes taken into account.
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Auxiliaries. Beside filter cloth and washing water, other auxiliary materials are
sometimes used for enhancing the process if the suspension too easily goes through
the cloth. These materials include mechanical auxiliaries wih high specific surface
like carbon powder, perlite, sawdust, and coagulating chemicals.

4.2 Resistance and basic equation

Resistance in the cake is caused by the narrow pores; thus, the Hagen–Poiseuille
equation can be applied because the flow in the pores is always laminar. One can
start with the Blake–Kozeny equation because the sludge can be considered as a
dense packing. These equations can be expressed in this case as

∆pc = 150
(1− ε)2

ε3

L η ω2
1 u0
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where the dω1 = 6 is substituted. From here

u0 = B
∆pc

η L

where

B ≡ 36 ε3

150 (1− ε)2 ω2
1

is a lumped parameter calles permeability factor with dimension m2, and is constant
during the process. This equation for u0 is due to Darcy, and is called the Darcy
equation.

From the Darcy equation another form can be derived for the pressure drop by
rearrangement, because W = u0A:

∆pc =
ηL

B

W

A
=

ηV

B A2
W

where V is the volume of the cake. It can also be expressed as

∆pc = α
η c V

A2
W

where c is the solid mass cumulated in the cake related to the filtrate volume [kg
solid / m3 filtrate], and α is a so-called specific cake resistance

α =
150 (1− ε) ω2

1

36 ε3 ρ1

Value of α depends on the porosity ε which can be considered constant in many
cases. It occurs, however, in some cases that the porosity depends on the pressure
pressing the cake, and even on the height of the cake. In this case we speak about
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compressible cake. In this compressible case α may vary along with the height of
the cake, but an average α may be used for approximating calculations.

Pressure drop on the media can be modelled in analogy to the cake, by substi-
tuting the αcV/A factor with a so-called resistance of media Rm [1/m]:

∆pm =
η

A
RmW

resulting in the Carman equation of filtration:

∆p =
η

A

(
αc

V

A
+ Rm

)
W ≡ η

A

(
αc

V

A
+ Rm

)
dV

dt

4.3 Filtration time

The Carman equation can be readily integrated if the pressure difference is con-
stant:

dt =
η

∆p

(
αc

A2
V +

Rm

A

)
dV

t =
η

∆p

[
αc

2

(
V

A

)2

+ Rm

(
V

A

)]

This equation gives t as a second order polinomial of V . In practice, the V (t)
function is looked for and measured; this is an increasing function with decreasing
slope:

V =
A

αc

√
2αc∆p

η
t + R2

m −Rm

The function has two parameters characterizing the material and the media:
α and Rm. Once these parameters are determined by small scale (laboratory)
experiments, the same values can be applied to design an industrial scale process.

For determining the parameters by experment, dt
dV values, or their approxima-

tion ∆t
∆V are plotted agains V (figure ***). This plot should give an approximating

straight line because

∆t

∆V
≈ dt

dV
=

ηαc

A2∆p
V +

ηRm

A ∆p
≡ a V + b

where a is the slope of the straight line, and b is its intersection with the axis.

Optimal filtering time. There is also a changeover time τ in batch processes;
this is the time used for washing and removing the filter cake, and then washing
the device and, finally, fitting new cloth, etc. Considering several consecutive batch
turns, the productivity of the process is measured by

JV =
V

τ + t
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The changeover time being constant, there is an optimal V (and an optimal t)
where the process ought to stop for maximizing the productivity. This is illustrated
in figure ***. Instead of V (t), another V ′(τ + t) function is plotted so that
V ′(τ + t) = V (t). The productivity is at maximum if the straight line drawn from
the starting point (the origo) and tangent to V ′(τ + t) has maximum slope. This
can also be determined analytically, as

Vopt = A

√
2∆pτ

ηαc

topt = τ + Rm

√
2ητ

αc∆p

Usually t ≈ τ or t ≈ 1.2 ∼ 1.25τ

Filtering with constant rate. Should a constant filtering rate W be produced,
the pressure must be continuously increased during the batch process, and must
follow a calculated function. By rearranging the above equations, ∆p as a function
of V or t is linear:

∆p =
ηW

A

(αc

A
V + Rm

)
=

ηW

A

(αc

A
Wt + Rm

)

4.4 Filter devices

Liquid sieve. Liquid sieves are rough devices for filtering large scale solid pieces.

Filter tub. Devices of tub shape, for batch filtration, working with gravity, pres-
sure, or vacuum. Vacuum driven filter tubs are sometimes called Nutsch filters,
shown in figure ***.

Filter bed. These are tanks or tubs filled with pebbles (rubble filter, figure
***) or sand sand filter, figure ***). They are usually upen to air and serve for
slow filtering (∼ 0.1 m/h), driven by water level difference, slow enough to save the
bed from deformation of channel formation, and to provide time for accomplishing
preferred bioprocesses. They are characterized by large space and cost. Closed
tanks filled with sand bed (1.2 to 3 m height) can be used for fast filtering (7 to 15
m/h).

Filter press. This is a batch device made of a series of uniform element pairs
(frames) that are assembled for filtering and disassambled for cleaning, as shown
in figures ***. The elements are fitted with filter cloth and then pressed together
for filtering. Alternating elements are put in the series so that small chambers
for accumulating the cake and others for channeling the liquid are connected with
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small holes that are assembled to form tubes. The suspension is led to the devices
by pressure, so that the pressure is higher inside the device that its environment
where the filtrate is collected.

Pressure filter. Contrary to the filter press, here the series of devices are put
in a pressurized vessel containing the suspension, and the filtrate forms inside thde
smaller devises covered by filter cloth. The filtrate is removed through collector
tubes. One form is the filter bags which usually hang on a common rail inside a
horizontal vessel (figure ***), and their form are protected by wire grid against
being pressed flat. Another form is the filter fingers or filter candles which form
a kind of tube bundles inside a vertical vessel (figure ***). The real difficulty in
the pressure filters is removing the cake. There are several applicable techniques
including washing, drying with gas, centrifugal effect. etc.

Filter drum. Filter drum is a rotating device for continuous filtering (figure
***). A drum is rotated slowly around a horizontal axis, and a part of the drum
is submerged in a riffle filled with the suspension. Filter cloth is fitted to the
superficies of the drum, and vacuum is maintained inside so that the filtrate forms
inside the drum and the cake forms on the cloth from outside. The suspension
is continuously re-filled to maintain a constant level in the riffle. The cake is
continuously removed by a blade from the upper side of the drum. This cake
removal is usually enhanced by pressing it from inside. For this aim, the drum
is divided to compartment sections from inside, and which section is pressed or
sucked is switched according to the rotation. Sophisticated devices include sections
for sucking, washing, drying, loosening, pressing.

Productivity of a filter drum is determined by the average width of the cake
forming on the drum, and the time one point of the filter cloth spends in the
suspension in one turn of the drum.

A version of filter drum filters in reverse direction: from inside to outside. They
are used is the suspension liquid also contains solid particles which settle too fast
and cannot be kept in suspension.

Filter belt. This is another continuous filtering device (figure ***). A close
belt fitted with filtering medium moves continuously; the suspension is fed over
it at a point above, the filtrate is collected below; the cake formed on the belt is
washed at a later point, and then removed at the end of the horizontal section.

Tray filter. This is a slowly rotating horizontal disk containinga series of flat
filter trays or chambers (figure ***). This is not a real continuous process but
a series of batch processes in circle. However, it can be applied to very dense
suspensions which cannot be filtered with drum.
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Centrifuges. They work in the same principles as the centrifuges in housholds.
Some filtering and settling fuges are shown in (figures ***).



Chapter 5

Mixing

5.1 Mixers

Mixers, stirrers, agitators, impellers, scrapers, kneaders are all rotating devices
submerged in some liquid to be mixed, stirred, etc. They are all fitted to a shaft
rotated by a motor. There are a numerous forms of fittings rotated in the liquid;
some basic classes are listed below.

The vessel in which the impellers rotate may also be fitted with buffles as is
ahown in figure *** in order to make a resistance against easily circulating the
liquid along the wall and without strong mixing, and also to prevent the liquid
from forming a funnel in the center and sucking gas from over the level. Sucking
gas into the liquid enhances foaming.

Paddle stirrer, arm stirrer, grid and horseshoe stirrers. As shown in fig-
ures ***, these basic devices are simple blades or plates parallel with the shaft.
They can be long or short compared to the internal diameter D of the vessel; this
length of the blade or arm is called the diamter of the mixer, and denoted in the
present text by d. Width w of the blade is its height along the shaft. If d/D is
small and w comparable to d then we speak about plate stirrer; if d/D is is large
and w/d is small then we speak about arm strirrer. Distance h of the lower edge
of the blade from the bottom is also an important property of the system. Several
arms can be fitted on the shaft above each other. The turning number is usually
20 to 40 /min.

A version of this flat type stirrers is stock or grid stirrers which consist of
vertically arranged blades near the wall.

Paddle stirrers can be made with two or three blades at the same height arranged
in star form on the shaft.

Horseshoe stirrers are also called anchor (or anker) stirrers, as well, andd they
can also be made in grid version.
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Helical-blade stirrer. Such devices (figures ***) are applied for strong mixing,
and careful homogenization.

Propeller mixer, compressor impeller. These devices (figures ***) consist
of curved surfaces similar to the ship screw, and push the liquid along the direction
of the shaft. They are used for large amount of liquid, with great turning number.

Turbine mixer, centrifugal impeller. These are very fast turning devices
shown in figures ***. They suck in the liquid from above and/or from below,
and push them out at the superficies; and thus make a strong circulation of the
liquid.

Knealers. Some types are shown in figures ***.

5.2 Power consumption

Power consumption P [J/s] may depend on the density ρ [kg/m3] and viscosity η
[kg/(m s)] of the liquid, the gravity present g [m/s2], the turning number n [1/s],
and geometrical data such as D, H, d, w, h, ar even more such length is they
characterize the vessel and the impeller. A polynomial form can be written as

P = BηagbDcρenfdiHjwkhs

where B is an unknown dimensionless constant factor. The exponents of the di-
mensions should satisfy the equations for kg, s, and m, respectively:

1 = a + e

−3 = −a− 2b− f

2 = −a + b + c− 3e + i + j + k + r

Three exponents are expressed in function of the others:

e = 1− a

f = 3− a− 2b

i = 5− 2a + b + c− j − k − r

so that
P = BηagbDcρ1−an3−a−2bd5−2a+b+c−j−k−rHjwkhs

that can be rearranged according to the exponents as

P = ρn3d5B

(
η

d2nρ

)a ( g

dn2

)b
(

D

d

)c (
H

d

)j (w

d

)k
(

h

d

)q
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The dimensionless Euler number of mixing and the Reynolds number of mixing are
defined as

Eu =
P

ρn3d5

Re =
d2nρ

η

so that a diemnsionless equation cen be written:

Eu = B

(
D

d

)c (
H

d

)j (w

d

)k
(

h

d

)q

Re−aFr−b

The Reynolds number of mixing is obtained from the original definition Re =
(duρ)/η by substituting the circumferential speed of the impeller u = dn). The
power consumption P can be expressed as the force the blade exerts on the liquid
multiplied by the speed it moves. The force is proportional to the pressure it exerts
on the liquid and the area the blade touches: P ∼ ∆p d2u. Thus

Eu =
P

ρn3d5
=

∆p d2 u

ρ u3 d2
=

∆p

u2ρ

This is why we speak about Euler number of mixing.
For a given geometrical arrangement, i.e. fixed ratios of D/d, H/d, etc., the

geometric ratios can be lumped with the contstant factor to give

Eu = A Re−a Fr−b

This equation can be applied to scale-up at design because Eu, Re, and Fr depend
on the material properties and the rotation number only.

The exponent b is usually negligible. Its effect is essential only if the mixing is
so fast that air (or other gas) is sucked to the liquid near the shaft.

A typical Eu–Re plot is shown in figure ***. At slow mixing, i.e. laminar
flow, a = 1, and b = 0. This is experienced if Re < 10. If there are side buffles in
the vessel then a = 0 in the turbulent region. Otherwise, a ≈ 0.1 ∼ 0.2.

Note that the above data makes possible to estimate the effect of geometric
scaling up or speeding up the rotation if geometric similarity is maintained.

In laminar region. Here a = 1, and thus

P = A ρ n3 d5 η

d2 n ρ
= A η n2 d3

That is, the power consumption is quadratic in the rotation number, and cubic in
the diameter.
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In turbulent region. Here a ≈ 0, and thus

P ≈ A ρ n3 d5

That is, the power consumption is cubic in the rotation number, and of fifth degree
(!) in the diameter. This is why mixing with long arms is so difficult.



Chapter 6

Heat transport

Heat itself is the change or transport of internal energy or enthalpy, depending on
the case.

There are three kinds of heat transport: conduction, convection, and radiation.
Heat conduction is transport of internal energy, driven by temperature difference
or slope. Heat convection is carrying internal energy in space by moving mate-
rial. Radiation is transport of internal energy mediated by electromagnetic waves
through vacuum or dilute gases.

Heat transport is a sloppy expression for transport of internal energy.

6.1 Heat conduction

A one-dimension version of Fourier’s low of heat conduction is

Q = −λ A
dT

dx

where Q is heat transport [W] in direction x, A is area [m2] of the surface perpen-
dicular to x, through which the energy is transported, T (x) is temperature [K] or
[C] homogeneous in planes perpendicular to x but dependent on space coordinate x
[m], and the factor λ [W/(m K)] is a material property called heat conductivity.
The negative sign indicates that heat is transported toward lower temperature. A
version of the equation is

q = −λ
dT

dx

where

q ≡ Q

A

is heat flux [W/m2].
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Heat conduction through homogeneous planar wall. Fourier’s low is a dif-
ferential equation that can be analytically integrated only if λ and A are special
functions of x. Such a special case is when both λ and A are constant. Con-
sider a planar wall of width w and homogeneous with constant heat conductivity
λ. Suppose constant temperature T1 all over one side of the wall, and constant
temperature T2 < T1 all over the other side of the wall (figure ***). Because of
symmetry, and constant A along direction x perpendicular to the wall plane, one
may consider the heat flux form of the equation. How large A is unimportant; one
may consider an arbitrary small A neglectable comparing to w, i.e. an arbitrary
narrow straight rod. It follows that the heat flux q is everywhere in the wall is
directed along x, and zero in perpendicular directions.

In steady state, i.e. when T and q are constant in time, q must be constant
along x; otherwise energy would accumulate or disappear from some space sector,
and this would involve temperature increase or decrease, contrary to the steady
state. Thus q and λ can be set off the integrals so that

q

w∫

0

dx = λ

T2∫

T1

dT

q w = λ (T1 − T2)

q =
λ

w
(T1 − T2)

The integration can be performed between any two planes, e.g.

q

x∫

0

dξ = λ

T∫

T1

dϑ

q x = λ (T1 − T )

which clearly shows that T is linear along x:

T = T2 − q

λ
x

Another lesson drawn from this result is that the reciprocal of λ is a kind of thermal
resistance.

Heat conduction through composite planar wall. Consider a composite
wall consisting of three homogeneous planar wall secions of the same cross section
area A and touching pairwise at the planar sides (figure ***). Let the widths and
conductivities be w1, w2, w3, and λ1, λ2, λ3, respectively. Let the temperatures at
the sides be, in the same order, T1, T1,2, T2,3, and T2. Each section can be computed
as above and, in the same way, the heat flux q must be the same everywhere. The
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temperature differences can be expressed as

w1

λ1
q = T1 − T1,2

w2

λ2
q = T1,2 − T2,3

w3

λ3
q = T2,3 − T2

These equation can be added to give
(

w1

λ1
+

w2

λ2
+

w3

λ3

)
q = T1 − T2

so that
q =

1
w1

λ1
+

w2

λ2
+

w3

λ3

(T1 − T2)

Q =
A

w1

λ1
+

w2

λ2
+

w3

λ3

(T1 − T2)

with a lesson that resistances in series are added together.

Heat conduction through circular walls. Here A is not constant along the
radius r but A = 2πrL where L is the lenght of the tube (figure ***). It follows
that q cannot be constant either. Thus, the original form is applied:

Q = −λ 2π L r
dT

dr

In the same way as earlier, Q must be constant along r, and the equation is inte-
grated as

Q
1
r

dr = −λ 2π L dT

Q ln
r2

r1
= λ 2π L (T1 − T2)

Q =
λ 2π L (T1 − T2)

ln
r2

r1

If r2 − r1 is small compared to r2 then the conduction can be approximated
with planar wall.

Integration for composite circular wall leads to

Q =
λ 2π L (T1 − T2)
∑
i

(
1
λi

ln
ri+1

ri

)
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6.2 Heat convection and film theory

Film coefficient

Heat convection cannot exist without simultaneous heat conduction because the
latter always occurs if there is temperature slope or difference in space.

Prandtl developed a model (or theory) to describe heat transport between solid
wall surface and liquid or gas. Imagine, for example, the case when the planar
wall surface is warmer than the fluid so that heat is trasported from the wall to
the fluid. Depending on how the fluid beside the wall is mixed, the temperature
decreases faster or slower toward the bulk of the fluid, in a continuous temperature
curve along x distance from the wall (figure ***).

There is always a laminar layer at the wall through which the heat is conducted
only. The temperature dependence along x in the laminar layer is linear, according
to the preceding section. The slope of T (x) in the layer is identical to the slope
at x = 0 or x → 0. Prandtl’s model extends the laminar layer to wider film with
the effective width δeff so much that at x = δeff the temperature just reaches the
temperature in the bulk of the fluid (figure ***).

This model approximates the real process in which convection and conduction
occur parallel with a model of conduction and convection is series. From the wall
till δeff pure conduction is considered with constant λ heat conductivity, with a
linear temperature profile, and from δeff to any distance an infinitely fast heat
convection is assumed that could be accopmlished by perfect mixing only. This
perfect mixing provides us with the constant temperature seen in the figure.

Thus, according to the model of Prandtl, all the resistance against the heat
transport is concentrated in the effective laminar film, so that

q = λ
(Ts − Tb)

δeff

where Ts is the temperature at the surface of the wall, and Tb is the bulk temper-
ature.

The effective width δeff is not known in practice. Conductivity λ of the fluid
would be valid in the case of liquid in still, even free of the so-called natural convec-
tion induced by temperature difference, and used in a differential model. However,
these two data can be combined in a single film coefficient of heat transport
α [W/m2K] so that what the trasport is proportional to is not the slope but the
temperature difference:

q = α (Ts − Tb)

Q = αA (Ts − Tb)

α is not a material property but it depends also on the flow (or mixing) of the
fluid. Its value is low if the fluid does not move, and high if there is fast motion
perpendicular to the wall. On the other hand, α depends on the material properties
as well through the dependence of λ.
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Prandt–Nusselt analogy

Instead of analytically or numerically solving the rather complicated system of
differential equations describing the three dimensional transport of impulse and
energy, dimensional analysis can be used to find an applicable numerical model.

Forced convection. When natural convection does not occur or can be ne-
glected, the following variables should be taken into account for a system where a
fluid flows in tube or along a wall:

α film coefficient
λ heat conduction
ρ density
η dynamic viscosity
cp specific heat
u speed of the flow
D a characteristic length, e.g. diameter of a tube
L length of the device (e.g. of the tube)

The empirical dependence of α on the other variables is looked for in a polynomial
form:

α = A ρa ηb λc cd
p ue Df Lh

Considering the dimensions, four equations follow for the exponents of mass, time,
temperature, and lenght, respectively:

1 = a + b + c

3 = b + 3c + 2d + e

1 = c + d

0 = −3a− b + c + 2d + e + f + h

Exponents a, b, c, and f can be expressed by e, d, and h as

a = e

b = d− e

c = 1− d

f = e− h− 1

so that the polynomial is expressed as

α = A ρe ηd−e λ1−d cd
p ue De−h−1 Lh

that can be rearranged according to the exponents as

α D

λ
= A

(
D u ρ

η

)e (cp η

λ

)d
(

L

D

)h
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that is

Nu = A Rem Prn

(
L

D

)k

where

Nu =
α D

λ

is the Nusselt number, and

Pr =
cp η

λ

is the Prandtl number. This latter one can also be expressed as

Pr =
cp η

λ
=

η

ρ
λ

cp ρ

=
ν

a

where ν is the kinematic viscosity, and a is heat diffusivity.
Remembering the definition of α, it is clear that the Nusselt number Nu is

the ratio of the characteristic length (D) to the effective width of the laminar film
(δeff ). The Prandtl number Pr is the ratio of viscosity to heat diffusivity, i.e. the
ratio of moment transport to heat transport.

The values of the exponents in the analogy equations depend on the actual
arrangement such as heat transport inside or outside a tube, along a wall, a tube
bundle, mixed vessel, boiling, condensation, cooling/heating of gas or liquid, etc.
Informative values are the following:

Forced flow, turbulent, in straight tube (Re > 104):

Nu ≈ 0.023 Re0.8 Pr
1
3

Forced flow, laminar, in straight tube (Re < 2300):

Nu ≈ 1.86
(

Re Pr
D

L

) 1
3

However, these equations cannot be used directly because the material prop-
erties η, ρ, and cp depend on T , and thus change their value in space with an
essential scale. Viscosity may change decades with temperature. Thus, they are
usually corrected with a factor taking into account the change of η between the
bulk and the wall surface:

Nu ≈ 0.023 Re0.8 Pr
1
3

(
ηb

ηs

)0.14
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Nu ≈ 1.86
(

Re Pr
D

L

) 1
3

(
ηb

ηs

)0.14

Inside a helical tube, the heat transport is better because the centrifugal force
makes the laminar layer smaller. One can approximate

α ≈ αstraight

(
1 + 1.77

D

R

)

where R is the radius of the coil.

Several empirical plots are available in the literature for either Nu or Y ≡ Nu

Prb
or

jH ≡ Y

Re
as function of Re.

Natural convection. When there is temperature difference between higher and
lower fluid points, then the densities are also different, and this densisty difference
may induce a vertical motion of the fluid. The warmer fluid rises and the cooler
ascendes. This motion is called natural convection.

In this case three additional factors should be taken into account:
∆T temperature difference
βT cubic coefficient of thermal expansion [1/K]
g gravitational acceleration

Then the dimensionless equation is

Nu = A Rem Grb Prn

(
L

D

)k

where Gr is the Grashof number:

Gr =
βT g ∆T ρ2 D3

η2

which expresses the ratio of buoyancy per volume to internal friction. When the
motion is not forced but purely natural, Re can be neglected:

Nu = A Grb Prn

(
L

D

)k

When the gas or liquid flows along a vertical wall, the temperature difference is
interpreted as ∆T = Ts − Tb. The characteristic length D is interpreted according
to the situation. In horizontal tubes with internal diameter d, the characteristic
length is the average distance between the upper and lower inner wall.

Natural circulation usually forms between two vertical walls, like glass windows,
is there is enough distance between them; this circulation enhances the heat trans-
port. If the distance of the two windows is low (the double window is narrow) then
no circulation can form, and the heat insulation is better.
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Considering two horizontal walls, the situation depends on whether the upper
or the lower wall is warmer. If the upper wall is warm, and the lower wall is cold,
then there is no natural convection. In the other case, however, natural convection
form, giving rise to circulation.

6.3 Heat convection at phase change

The heat transport related to condensation and boiling is usually much better than
that of liquids oe gases.

Condensation

The condensation as a process does not depend essentially on the temperature
difference between the vapor (T ) and the wall surface (Ts). It occurs even at very
small, almost zero temperature difference if the vapor is at dew point temperature.

The film coefficient can be as high as 10 to 15000 [W/(m2K].
When steam or other vapor flowing horizontally is condensed on vertical wall,

the condensate accumulates on the wall as a layer with increasing width downwards
because the layer slips down on the wall by gravity. In steady state, the weight of
the layer is balanced by the friction force. Thus, the accumulation of mass along
the vertical direction x can be expressed as a function of the width δ of the layer:

dm

dx
= f(δ(x))

In the same time, the heat produced by condensation in unit time (is equal to that
transported throug the condensate layer

dm

dx
∆H =

λ

δ(x)
b (T − Ts) = α b (T − Ts)

where ∆H is the condensation heat, and b is the horizontal lenght of the wall.
From here, the following equation can be derived for average film coefficient of
condensation on vertical plane wall or verital rod:

α ≈ 0.943
(

λ3ρ2∆H g

η L ∆T

) 1
4

where L is the vertical length of the falling condensate film. It follows that the
heat transport of such condensation can be enhanced by shortening L. This can be
achieved by fitting the vertical tubes with circular rings at periods of 0.3 - 0.4 m.

For condensation on horizontal rods (otside of horizontal tubes):

α ≈ 0.728
(

λ3ρ2∆H g

η D ∆T

) 1
4
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where D is the outer diameter. For a series of rods below each other:

α ≈ 0.728
(

λ3ρ2∆H g

Z2/3 η D ∆T

) 1
4

where Z is the number of rods.
For condensation inside a short horizontal tube and not too much condensate:

α ≈ 0.575
(

λ3ρ2∆H g

η d ∆T

) 1
4

where d is the inner diameter. (If much condensate forms then it prevents good
heat transport, and can even fill up the tube.)

Presence of inert gases (e.g. air) deterioriates the heat transport in a great
extent because the partial pressure of the condensing component is decreased.

There are two kinds of condensation. The common kind is the one forming
condensate layer, discussed above. The other one is forming condensate drops.
This is preferable becasue more cold surface is left free on which the condensation
is faster (with a factor 4 to 8). However, drop condensation is difficult to achive;
this depends on the surface material (mainly Cu and Cr alloys) and even on the
condensing material. (Partcularly difficult for organic vapors.)

Boiling

The film coefficient of boiling liquids depends in a special way on the tempera-
ture difference between the liquid (T and the wall surface (Ts). Such a typical
dependence is shown in figure ***.

At small difference (e.g. up to 1 ∼ 2 K) calm boling occurs with free convection.
This region is characterized with microbubbles at the wall. Nucleate boiling belongs
to higher temperature difference up to a critical point characteristic to the material.
The film coefficient is highest at this point (approximately 25 C for water, and 42
C for toluene), and then it decreases with the temperature difference. The reason
of this decrease is forming vapor layers (enlarged bubbles) at the wall. The heat
transport through vapor is much less than through liquid. Note that the heat
transport (in[W]) does not decrease but increases, even is α decreases. At very
high temeperatures, the film coefficient again increases because of heat radiation
of the wall.

The film coefficient of boiling water at 25 C temeperature difference is approx-
imately 2 · 104 [W/K].

The heat transfer cannot be enhanced by mixing because the boiling makes is
better.

A rough estimate for boiling water is

α = 80 (∆t)2 p0.6
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There are other estimations as well, and factors for computing α of other materials
from that of water.

Thermosiphon tube. When boiling happens in vertical tubes (thermosiphon
boiler, also called calandria boiler), the liquid near the bottom is just warming up,
calm boiling a little higher, and nucleate boiling around the third of the tube. At
about halfway greater bubbles form, and vapor layers are found even higher. these
isolated layers are eventually exploded, giving rise to a labile system. This is called
transient boiling region. At even higher level, the vapor islands unify to form a
vapor plug, pressing a liquid layer to the wall. If the tube is too long then at the
top of the tube is dry.

Subcooled boiling. Effective heating of liquid can be achived by keeping the
wall surface at about 5 C above the boiling point of the liquid. Then calm boiling
happens just at the wall. The microbubbles enter the cold bulk of the liquid,
condensate there, and maintain large heat flux.

Spray cooling. Condensation at atmospheric temperature (air condensers) can
be enhanced by spraying just so small amount of water to the outer wall of the
condenser that evaporates and takes over the heat.

6.4 Heat radiation

Absorption, radiation, emission, and color

When electromagnetic radiation (like heat) reaches a body, the energy carried by
it partially absorbed, reflexed, or transmitted. Thus, if Ein is the incoming energy,
the parts are respectively QA = A Ein, QR = R Ein, QD = D Ein (D stands for
’diathermy’), where the factors satisfy A+R +D = 1. For solid bodies D = 0, but
some are (partially) transparent, like glass.

The electromagnetic radiation consists of several constituent parts of different
frequencies (or wavelengths). Bodies absorb and reflect the waves selectively; and
this selectivity depends on the material. Color of a body is caused by this selectivity.

The bodies radiate heat. The emitted energy is proportional to the 4th degree
of the absolute temperature, according to experience, and can be expressed as

q = ε σ T 4

where σ is the Stephan-Boltzmann constant

σ = 5.67 · 10−8 W
m2K4

and 0 < ε < 1 is the material dependent emissivity.
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Distribution of the frequency of the emitted energy also depends on temper-
ature of the body. At high temperature the maximum is shifted towards lower
wavelengths, i.e. higher frequencies (law of Wien: λmax · T = constant). The
visible colors form a narrow wavelenght interval around the maximum of the distri-
bution at 6000 K, the temperature of the Sun. Approximately 45.8% of the Sun’s
radiation belong to the visible colors. Contrary, radiation of an oven (below 500
K) contains mostly infrared waves, and less then its 0.01% is visible.

By definition, an ’ideal’ black body absorbs every wavelenght radiadion. There
are a few ’gray’ materials which absorb approximately uniformly. Such materials
are e.g. Ni, slate, tarred felt. oil cloth, black paper. These materials absorb infrared
light approximately in the same extent as visible light.

Most bodies are, however, colored. Light colors, especially white, are caused
by reflecting much percent of the visible light. Thus, for example, if a white paper
sheet is exposed to sunshine then it does not warm up (A ≈ 0.10). However, it
warms up and even bursts into fire near an oven (A ≈ 0.95). Contrary, a black
paper sheet warms up in both cases (A ≈ 0.95 for infrared, and A ≈ 0.94 for visible
radiation).

Non-conducting materials, like metal oxides, stones, wood, rubber etc. behave
like white paper. Conducting materials like metals provide good reflection under
500 K, and good absorption under Sun.

Radiation transport between two facing surfaces

The Stephan-Boltzmann low expresses the radiation of a black body as qb = σ T 4

so that for a real body q = ε qb. If a body is in thermal equilibrium with its
surroundings then it emits just as much energy as it absorbs: Aqb = εqb; thus
A = ε.

Effective radiation of a body consists of its emission and reflexion of the incom-
ing radiation. Consider two equal area facing surfaces with shown in figure ***,
and suppose D1 = D2 = 0, so that R = 1− A. Denote the self-radiation εσT 4 by
E, and the effective radiation by H. Then, by A = ε:

H1 = E1 + (1− ε1)H2

H2 = E2 + (1− ε2)H1

because they reflect each others radiation. By substituting each other:

H1 = E1 + (1− ε1) [E2 + (1− ε2)H1]
H2 = E2 + (1− ε2) [E1 + (1− ε1)H2]

and this can be solved as

H1 =
E1 + (1− ε1)E2

ε1 + ε2 − ε1ε2

H2 =
E2 + (1− ε2)E1

ε1 + ε2 − ε1ε2
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The radiation transport from body 1 to body 2 is Q = H1 −H2, i.e.

Q =
ε2E1 − ε1E2

ε1 + ε2 − ε1ε2

Since E1 = ε1 σ T 4
1 and E2 = ε2 σ T 4

2 , one may write

Q =
ε1ε2

ε1 + ε2 − ε1ε2
σ

(
T 4

1 − T 4
2

) ≡ ε1,2σ
(
T 4

1 − T 4
2

)

where
1

ε1,2
=

1
ε1

+
1
ε2
− 1

If ε2 = 1 (black body) then ε1,2 = ε1.
If ε1 = ε2 then ε1,2 = ε

2−ε .

Screening

Consider three equal area surfaces, i.e. two surfaces (1) and (2) and a screen (s)
in between as is shown in figure ***, with equal emissivities ε1 = εs = ε2, and
with temperatures T1, Ts, and T2. We know from the preceeding subsection that
ε1,2 = ε

2−ε if no screen is present. That is,

qno screen
1,2 =

ε

2− ε
σ

(
T 4

1 − T 4
2

)

On the other hand, ε1,s = εs,2 = ε
2−ε , in the same way. It follows that

q1,s =
ε

2− ε
σ

(
T 4

1 − T 4
s

)

qs,2 =
ε

2− ε
σ

(
T 4

s − T 4
2

)

In steady state q = q1,s = qs,2, therefore

T 4
1 − T 4

s = T 4
s − T 4

2

so that
T 4

s =
1
2

(
T 4

1 + T 4
2

)

By substitution

q = q1,s =
ε

2− ε
σ

[
T 4

1 −
1
2

(
T 4

1 + T 4
2

)]
=

ε

2− ε

1
2

σ
(
T 4

1 − T 4
2

)

that is
q =

1
2

qno screen
1,2
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Consider now several, generally n screens between the two end surfaces, as is
shown in figure ***. In the same way as above, in steady state T 4

1 − T 4
s1 =

T 4
s1 − T 4

s2 = ... = T 4
sn − T 4

2 and, finally,

q =
1

n + 1
qno screen
1,2

Thus, effective insulation can be achieved by a series of screens.

6.5 Overall heat transport

Here we consider heat transport between two fluids separated by a wall, as is shown
in figure ***. At the warmer side, the heat is trasported from the warm fluid 1
to the cooler, but yet warm surface of the wall by conduction and convection. The
total effect is expressed as

q = α1 (T1 − Ts1)

where α1 is the film coefficient on this side. Inside the wall the heat is transported
by conduction only. Considering a homogeneous wall with conductivity lambda
and width w, the effect is described as

q =
λ

w
(Ts1 − Ts2)

At the other side, the heat is transported from the surface to the cooler fluid 2 by
conduction, convection, and even radiation. For dense fluids, like liquids, radiation
can be neglected. The total effect is expressed as

q = α2 (Ts2 − T2)

where α2 is the film coefficient on this side.
All these three heat fluxes are equal in steady state. The overall effect can be

expressed as
q = U (T1 − T2)

where U is overall heat transfer coefficient:

1
U

=
1
α1

+
w

λ
+

1
α2

(resistances are added). In practice, a modified coefficient is applied as

1
U ′ =

(
1
α1

+ β1

)
+

w

λ
+

(
1
α2

+ β2

)

where β is the resistance due to fouling (deposits, dirtiness, fouling as well), and
called fouling factor.
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Informative film coefficients are shown in the following table.
α [W/m2K]

Gases 1 to 60
Superheated steam 30 to 120
Liquid, natural convection 60 to 80
Liquid, forced convection, laminar 120 to 350
Liquid, forced convection, turbulent 350 to 2,500
Boiling liquid, calm 1,700 to 7,000
Boiling liquid, nucleate 7,000 to 50,000
Condensing organic vapor 1,200 to 2,500
Condensing steam, film condensation 6,000 to 14,000

but down to 600 or 300 if fouling!
Condensing steam, drop condensation 30,000 to 40,000



Chapter 7

Heat exchange arrangements

7.1 Batch arrangements

Twice constant temperatures

This is the simplest arrangements because both temperatures are constant in time.
It is also called ’both infinite heat capacities’ arrangements, but this term is a little
bit misleading. Such an arrangement is evaporative boiling a finite amount of liquid
by application of condensing vapor (steam) stream as heating medium, as is shown
in figure ***. The amount of liquid decreases during the process; this is why it
is a batch one. In this case the original equation can be used directly to compute
the heat transport: q = U (Tsteam − Tboiling).

One constant temperature

Here one of the fluids can be considered of infinite capacity, the other one has finite
capacity, and perfect mixing is assumed.

One example is warming up a finite amount of liquid or gas by application
of condensing vapor (steam) stream as heating medium, as is shown in figure
***. Temperature of the fluid increases monotonically in time from the initial
temperature T0 and asymptotically approches Tsteam.

Another example is cooling down a finite amout of liquid or gas by application
of air cooling in wind with constant ambient temperature. (Thus, the heat taken
over by the air is carried away, and does not increase the temperature of the fresh
air.) Temperature of the fluid decreases monotonically in time from the initial
temperature T0 and asymptotically approches Tfresh air.

From the viewpoint of the finite amount fluid, discussion of the process is sym-
metric in the two cases. Here we deal with the cooling. The heat transported in a
differential time period is

dQ = U A (T − Tc) dt

57
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where Tc is the temperature of the cooling medium. On the other hand, the heat
lost by the finite amount fluid because of decreasing its temperature is

dQ = −m cp dT ≡ −ϕ dT

where m is the mass of the fluid, and ϕ is its heat capacity. These two values must
be equal:

−ϕ dT = U A (T − Tc) dt

dT

T − Tc
= −U A

ϕ
dt

ln
∆
∆0

≡ ln
T − Tc

T0 − Tc
= −U A

ϕ
t

∆
∆0

= e
−

U A

ϕ
t

T = Tc + ∆0e
−U A

ϕ t

T = T0 − (1−∆0) e−
U A

ϕ t

as is shown in figure ***.

The heat transported during time t is computed as

Q = U A

t∫

0

(T (τ)− Tc) dτ

It would be much better, however, to compute it as

Q = U A (∆T )mean t

By rearrangment, substitution, and integration

(∆T )mean t =
Q

U A
=

t∫

0

∆ (τ) dτ = ∆0

t∫

0

e−
U A

ϕ τdτ = −∆0
ϕ

U A

[
e−

U A
ϕ t − 1

]

(∆T )mean =
∆0ϕ

U A t

[
1− e−

U A
ϕ t

]
=

∆0ϕ

U A t

[
1− ∆(t)

∆0

]
= ∆0 ln

∆0

∆

[
∆−∆0

∆0

]

(∆T )mean = (∆T )ln =
∆0 −∆

ln
∆0

∆

=
∆−∆0

ln
∆
∆0

This is the so-called logarithmic mean. The logarithmic mean applies for
heating, as well.
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Finite capacities

Such an arrangement is shown in figure ***. The warmer fluid cools down; the
cooler fluid warms up. Again, perfect mixing is assumed in both fluids. First it is
worth to determine the common temperature to which both temperatures approach
asymptotically at infitite time. This can be accomplished by taking into account
the heat balance:

(T1,0 − T∞)ϕ1 = (T∞ − T2,0)ϕ2

T∞ =
ϕ1T1,0 + ϕ2T2,0

ϕ1 + ϕ2

The differential heat balance be written as cooling = warming, i.e.

dQ = −ϕ1dT1 = ϕ2dT2

dT1 = −ϕ2

ϕ1
dT2

After integration from zero to some finite time:

T1 − T1,0 = −ϕ2

ϕ1
(T2 − T2,0)

T1 = T1,0 +
ϕ2

ϕ1
(T2,0 − T2)

T1 − T2 =
ϕ1 + ϕ2

ϕ1
T2 +

ϕ1T1,0 + ϕ2T2,0

ϕ1

Heat loss of the warmer fluid because of temperature decrease must be equal to the
heat transported to the other fluid:

−ϕ1dT1 = U A (T1 − T2) dt = U A

[
ϕ1 + ϕ2

ϕ2
T1 +

ϕ1T1,0 + ϕ2T2,0

ϕ2

]
dt

−ϕ1dT1 = U A
ϕ1 + ϕ2

ϕ2
(T1 − T∞) dt

dT1

T1 − T∞
= −U A

ϕ1 + ϕ2

ϕ1ϕ2
t ≡ −U A R t

ln
T1 − T∞
T1,0 − T∞

= −U A R t

Thus
T1 − T∞ = (T1,0 − T∞) e−UARt

T∞ − T2 = (T∞ − T2,0) e−UARt

and after adding them

T1 − T2 = (T1,0 − T2,0) e−UARt
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∆ = ∆0 e−UARt

In the same way as earlier, logarithmic mean can be used for computing the trans-
ported heat.

7.2 Continuous arrangements

Continuous processes are designed to operate in steady state. Steady state can
never be achieved perfectly in practice, but the processes can be discussed by
assuming the steady state.

Instead of the finite heat capacity ϕ = m cp, here ϕ is used to denote heat
capacity flow rate: ϕ = ṁ cp where ṁ is mass flow rate.

Co-current arrangement

This ideal arrangement is achieved by entering both the hot and the cold streams at
the same end of a double pipe, as is shown in figure ***. In an imaginary infinite
long device the two temperatures would asymptotically approach each other, and
the temperatures run along the length of the exchanger in the same shape as along
time in the case of both finite capacities batch process. Instead of process time t,
here pipe length L occurs in the formulas. The temperature profile as shown in
figure *** can be converted to linear if not the length but the transported heat
is taken as independent variable; this is shown in figure ***. Because of linearity,
one can write

d∆
dQ

=
∆in −∆out

Q

In the same time
dQ = U ∆ da

where a is the heat tranport area, thus

d∆
U ∆ da

=
∆in −∆out

Q

d∆
∆

= U
∆in −∆out

Q
da

ln
∆in

∆out
= U

∆in −∆out

Q
A

so that the logarithmic mean can be used again:

Q = U A
∆in −∆out

ln ∆in

∆out
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Countercurrent arrangement

This ideal arrangement is achieved by entering the hot stream at one end of a
double pipe, and the cold streams at the other, as is shown in figure ***. Three
different temperature profiles are shown in figures ***; according to the relation
of heat capacity flow rates: ϕ1 = ϕ2, ϕ1 < ϕ2, or ϕ1 > ϕ2. The profiles are linear
in each case when measured to Q, and with same derivation presented in the case
of co-currency, we obtain the already familiar equations with logarithmic mean
temperature difference:

Q = U A
∆1 −∆2

ln ∆1
∆2

where ∆1 = T1,in−T2,out and ∆1 = T1,out−T2,in represent temperature differences
at both ends of the pipe. Thus, the logarithmic mean seems to play a general role
in heat exchange.

Note that T2,out ≥ T1,out may occur; that is more heat can be transported with
countercurrent arrangement than with co-current one.

On the other hand, ∆1 = ∆2 may also occur, in which case the logarithmic
mean is undefined. Numerical instability may also occur if ∆1 ≈ ∆2. When
|∆1−∆2| < 5C then arithmetic mean (∆1+∆2

2 ) may be used as good approximation.

Modelling

The Nu−−Re−−Pr equations shown in the preceeding chapter refer to material
properties η, ρ, and cp. At which temperature should these properties be taken is
not specified. However, the temperature of a stream is not constant, unless boiling
or condensation happens at constant temperature.

Versions of the modelling equations are known according at which temperature
are the material properties calculated. They can be taken in the bulk, at the
temperature of the solid surface, or at some average temperature. Even if viscosity
and density ar taken at the wall temperature, the specific heat can be taken in the
bulk. The experimental exponents of Re and Pr, as well as the constant factor are
different in these cases.

In either case, an average temperature is taken along the tubes. Another usual
technique is dividing the long tubes into shorter sections, and computing the prop-
erties section by section.

7.3 Heat exchangers

In a heat exchanger (abbreviated as HEX) the stream flow, and their temperatures
change from the inlet point to the outlet point. Thus, applying the Prandtl-Nusselt
relations should be subjected to some care, considering at which temperature should
the material properties (density, specific heat, and viscosity) taken.
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Double pipe heat exchangers

Straight double pipe heat exchanger is shown in figure ***. Such a HEX ap-
proximates co-currency or counter-currency depending on where the streams are
fed. Several such units can be assembled to a longer unit, in a coil shape. They
are sometimes assembled one above the other, forming a vertical cooling wall, and
sprinkled with water.

Shell-and-tube heat exchangers

A several tubes (even hundreds) are fixed together in a bundle and closed in one
shell. The tubes provide parallel channels to one of the streams (either hot or cold
one), whereas the shell is used as the channel for the other stream (cold or hot one,
respectively).

For warming up cold stream, or for recovery of heat in the hot stream, the hot
fluid is led to the inner tube, and the cold one to the outer space because otherwise
the heat loss through the outer tube wall would be greater.

Single pass exchanger. In its simplest form (figure ***), an elongated, wide,
straight shell containes uniform straight tubes, fit in place by perforated disks, so-
called tube sheets. The tubes run along the constant diameter part of the shell, to
the two supporting tube sheets at the ends. There are inlet / outlet nozzles at the
heads of the shell, these are used for the stream flowing in the tubes. There are
also inlet and outlet nozzles on the constant diameter part of the shell, near the
two ends; these serve for the stream flowing in the shell. The tube sheets serve as
walls, too, in the sense that they separate the shell side from the tube side.

There are special technical constructions to cope with the heat dilatation. One
of the is the so-called floating head HEX (as opposed to fixed head HEX).

The tubes can be arranged in the tube sheet in different layouts. One speaks
about triangular and square pitches (figure ***), but pitch means the distance
between the centers of two neighbouring tubes.

The many narrow tubes together form a large heat transport surface; much
larger than a double pipe exchanger with the same overall cross section area for
the inner tube flow could provide. Triangular pitch is denser than the squared one,
but is more difficult to clean.

Baffles are usually put in the shell, perpendicular to the tubes. Buffels are like
tube sheets but a part of them is cut out (figure ***). These baffles direct the
flow in the shell, making faster or slower flow, and thus modifying Re number and
the transfer coefficient.

As a result of using baffles perpendicular to the tubes, the flow in the shell is
no more parallel with the tube but a crossflow is achieved.

For calculating the Re number of the flow in the shell, the flow perpendicular
to the tube bundle between the baffles, and parallel with the tubes when passing a
baffle, are to be computed independently, and then averaged.
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Multipass heat exchangers. At one end of a double pass exchanger, the head
is divided to two separated parts, and the two nozzles of the tube side is situated at
the two separated parts. The other head of the exchanger is closed (figure ***).
This arrangement divides the tube bundle into two sets. The tube side stream
enters in one of the nozzles, passes through the tubes belonging to that part, turns
in the other head, and flows back in the tubes of the other part before it leaves the
first head through the other nozzle. Thus, the tube side stream flows in a half cross
section (half number of tubes), and passes approximately twice a long length. The
shell side is the same as in the single pass exchanger.

Fourn and even six tube passes can also be achieved in similar way. The main
effect of this arrangement is narrowing the cross section and thus producing faster
flow in the tubes (greater Re number), for the price of higher pressure drop and
pumping power.

The shell can also be made double pass by applying a baffle along the tubes
in the shell. A HEX with two shell passes and four tube passes (a ’2-4 HEX’) is
shown in figure ***.

One can play a long time with length, shell diameter, tube diameter, vertical
or horizontal positioning, tube diameter, pitches, tube number, number of passes,
leading a stream in the tube or the shell, baffles, and baffle pitches, in searching
for proper design providing good heat transfer coefficients, low pressure drop, no
vibration, and low cost.

Correction factors. The multipass exchangers are neither co-current, nor counter-
current units. Their behaviour are modelled as distorted counter-current heat
exchangers, but the logarithmic mean temperature difference is corrected by mul-
tiplying it with a geometric correction factor 0 < fG < 1:

Q = U A fG
∆a −∆b

ln ∆a − ln∆b

The proper value of this correction factor depends on the arrangement and the
temperature differences of the four streams, and are plotted in charts like that
shown in figure ***.

Kettle boilers. Kettle boilers are horizontal heat exchangers with a tube bundle
from one end of the shell not reaching to the other end but only to a separating
weir (figure ***). The bundle fills the width of the shell at the bottom, and the
upper part of the shell is empty for providing space of the forming vapor. This
boiler is used at the bottom of distillation columns to perform partial reboiling of
the liquid flowing down from the column. The liquid to be boiled enters the shell
near the end where the heating tubes start. That part of the liquid which is not
boiled leaves the shell at the other end, behind the weir. The heating medium
(usually steam, sometimes heating oil) flows in the tubes. The kettle boiler has
two tube passes (to and back). This is usually achieved by bent tubes (U-tubes).
However, cleaning the inside of such tubes is difficult.
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Thermosiphon boilers. Thermosiphon boilers are single pass vertical heat ex-
changers (figure ***) with heating medium fed to the shell, and the liquid to the
tubes. This exchanger is used to perform total boiling of the liquid in the tubes.
No pumping of the liquid is needed because the boiling provides the liquid with
driving force to suck in at the bottom and leave at the top.

Condensers. For condensing vapor streams, the vapor is usually fed to the shell
of a horizontal heat exchanger. The streams enters the shell at the top, and the
condensate leaves the shell at a bottom nozzle by gravity; thus, the condensate does
not cover the cooling tubes’ surface. However, the condenser is sometimes partially
flooded (intentionally) by the condensate for controlling the cooling power.

Finned (ribbed) tubes

The heat exchange surface of the tubes in the double pipe and shell and tube heat
exchangers can be extended by fins or ribs (figure ***). This is sometimes applied
when the film coefficients at the two sides of the tube are too much different. For
example, steam condenses at one side (very good heat transfer), and inert gas warm
up at the other side (rather small film coefficient). In this case that side with small
coefficient is enlarged with fins.

Plate heat exchangers

Several corrugated plates, usually in squared form, are faced each other, forming a
prism (figure ***). If two such plates are pressed together, the corrugated surfaces
together form channels, usually 1.6 to 6 mm wide. These channels constitute the
spce where the streams flow. Holes made near the corners of the plates serve as
inlet and outlet channels; these holes lead the streams plate by plate. Each second
gap between the plates form the space to one of the streams. Thus, for example,
the space between plates 1 and 2, 3 and 4, 5 and 6, etc. form the space for the hot
stream, whereas the space between plates 2 and 3, 4 and 5, 6 and 7, etc. form the
space for the cold stream. This system is similar to that one used in filter press.

Spiral plate heat exchangers

The corrugated plates are rolled in spriral form, and covered at the two sides (figure
***). One of the stream enters at the center and leaves through the nozzle at the
mantle; the other one enters in another nozzle at the mantle, and leaves from the
center. The channels are usually 5 to 20 mm wide. For calculation the equivalent
diameter is twice the width of the channel.
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Impregnated (proofed) graphite heat exchangers

Graphite is impregnated with plastic to provide resistance agaist corrosive materials
like chlorine and chlorinated chemicals. The proofing material fills in the pores,
and enhances the strength (stability) and conductivity as well. Graphite heat
exchangers can be tubular exchangers or plate exchangers, but they can also be
formed from one block by driving transversal rows of holes through it as is shown
in figure ***.

Barometric condensers

Small pressure vapors are sometimes condensed by directly contacting them with
cooling water so that the condensate and the water leave the common mixing space
together through a long downcomer (descent pipe), as is shown in figure ***. The
mixing space contains trays or packing for enhancing the phase contact. The non-
condensing gases are sucked by dry vacuum, and the vacuum is also joined to the
descent pipe 10 m higher than the liquid pool. This way the dry vacuum cannot
pull up the liquid. On the other hand, the descending liquid also forms vacuum.

Heat pipes

Heat pipes are tubes closed at both ends, air removed from them, and filled with
a small amount of liquid. On end of the tube is warmed up so that the liquid
evaporates and fills in the tube. The tube is cooled at the other end, so that the
vapor condeses.

In its simplest form the heat pipe is a vertical devices transporting heat upwards.
The condensate flows down by gravity. This arrangement can be changed by setting
porous material to the inner wall of the tube. In that case these pores transport
the condensate back to the cold part of the tube, and the tube can be used in any
direction (figure ***).

Boiling and condensation provide very good heat transport. Heat pipes are
used in temperature control and cooling electric devices. If heat exchange has to
be achieved between streams that should be prevented from contacting, there is
always danger that corrosion of the heat transport device gives rise to leakage and
direct contact. In such situations heat pipes can be used to transport heat between
two spaces separated by double wall.
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Chapter 8

Evaporation

8.1 The evaporation process

Evaporation is a process that removes a part of the volative liquid solvent of a
solution of non-volatile materaial (usually solid material solved in liquid). The aim
of this process is concentrating the solid, at most up to its saturation (just before
precipitation).

Boiling point of the solution depends of the pressure and the concentration as
well. At a given pressure, the boiling point increases with the concentration (boiling
point rise). For example, boiling point of atmospheric aquous solutions is higher
than 100 C.

Evaporation is also performed in order to crystallyze (precipitate) the solid, but
in this case the precipitation is achieved by cooling the saturated solution.

The most common solvent is water. However, when water is evaporated, the
forming steam will be called vapor (not steam) in order to prevent mismatching this
process steam with the utility steam usually applied for heating up the evaporator.

Unless electric heating is applied, there are five connections of an evaporator
(figure ***): (1) feed (dilute solution), (2) product (concentrated solution), (3)
vapor or condensate (the removed part of the solvent), (4) steam (heating medium
inlet), and (5) return (waste) water (heating medium outlet).

Heat and material balance. For calculating the heat power necessary to oper-
ate the evaporator, the specifications and heat balance are to be taken into account.
Usually the feed flow rate, feed temperature, feed and product concentration, and
the presure are specified, as well as the heating steam data.

The net heat power absorbed by the evaporation process can be calculated by

Qnet = L0 · cp · (Tin − Tb) + V ·∆H

where L0 is the feed flow rate, cp is the feed’s specific heat, Tin is the feed temper-
ature, Tb is the boiling point of the product (not the feed) at the pressure of the

67



68 8. Evaporation

evaporation space, V is the flow rate of the vapor formed in the process, and ∆H
is the specific vaporization heat of the solvent at boiling point Tb. The first part
is the heat necessary to warm up the feed to boiling point; the second part is the
heat necessary to evaporate a part of the solvent.

Naturally
L0 = V + L

where L is the product flow rate. The usual measure of concentration is mass
fraction x. Since no solute is evaporated,

L0 · x0 = L · x

where x0 is the concentration in the feed, and x is concentration in the product.
Thus,

L = L0
x0

x

V = L0

(
1− x0

x

)

The heat balance can be written as

S ·HS + L0 · h0 = S · hW + L · h + V ·HV + QL

where S is the flow rate of the steam (and of the return water), HS is the steam’s
specific enthalpy, hW is the specific enthalpy of the return water, h0 is the specific
enthalpy of the feed, h is that of the product, HV is specific enthalpy of the vapor,
and QL is heat loss. Thus, the steam to be used is

S =
L · h + V ·HV + QL

HS − hW

The steam enthalpy depends on the steam’s pressure and temperature (usually
superheated pressure is available). The enthalpy of the return water depends on
the pressure in the heating jacket of the device (because its temperature is the
water’s boiling point at that pressure). These data can be determined with steam
table.

The temperature in the evaporator can be approximately determined by calcu-
lating boiling point rise, but there are charts showing the boiling points as function
of the concentration.

The enthalpies of the solution are plotted in charts (e.g Merkel plots or Mollier
plots) in function of the concentration. Isobar and isoterm lines are usually also
provided in these charts.

The vapor formed in the process is superheated because, due to the boiling
point rise, its temperature is higher than the dew point (boiling point) of the
pure solvent at the actual pressure. However, the vapor looses its extra energy by
contacting with the wall of the evaporator, and the vapor leaving the outlet nozzle
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can be considered as saturated vapor. For calculating the heat exchanger area of
the heating in the evaporator, approximately 10 to 20 % extra heat is to be taken
into account for this effect. Thus, for calculating the heat exchanger, approximately
Q = 1.15 ·Qnet is to be considered.

The superheating is just one source of heat loss; there are other losses through
the wall, although the evaporators are usually well insulated. Approximately 20 to
50 % of the used heat power is lost.

Heat exchanger. For determining the necessary heat transfer area A, the usual

Q = U ·A ·∆T

is applied. However, there are different U values in the literature depending on how
∆T is defined. There are at least three different ways how the temperature in the
evaporator is measured. First of all, the temperature situated in the vapor space
of the evaporator shows the boiling point of the pure solvent at the given pressure.
Second, the boiling point can be determined according to the boiling point rise.
This temperature could be measured just at the interface between the liquid and
the vapor, i.e. just at the surface level of the liquid. The vapor’s temperature
is the same at this point, but its temperature quickly decreases to the saturation
temperature at higher points. Third, the temperature is higher deep in the liquid
because of the hydrostatic pressure rise. Thus, when specifying a heat transfer
coefficient, where the temperature is measured should also be specified.

Preheating. The heat exchanger applied in the evaporator is ususally more ex-
pensive than applicable to the feed because the more concentrated solution’s vis-
cosity is also greater, and the tenperature is higher and, additionally, a special
arrangement is used for the evaporator. This, it is usually more economical to
heat near to its boiling point before entering the evaporator. If the pressure of
the feed stream is higher than that in the evaporator body (as is usual), the feed
temperature can be higher than its boiling point at the pressure inside.

8.2 Evaporators

The heat exchanger that transports the heat for evaporating a part of the solvent
can be set inside the evaporator or outside. Old evaporators have internal boiling
devices, but later constructions apply external boilers.

Natural circulation of the liquid is applied if the viscosity is small; but the
circulation is enforced by pump when viscous liquid is evaporated.

Robert evaporator

This is an old type evaporator, developed for sugar factories, with internal heat ex-
changer and natural circulation, as is shown in figure ***. A vertical thermosiphon-
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type boiler is built in the vessel. The dilute solution is fed above the boiler. The
unboiled liquid descends through the wide central channel, and the liquid boils and
ascends in the narrower riser tubes. The steam condenses around the many tubes,
but the liquid is cooler in the wide central channel; this effect provides the driving
force for natural circulation. Air carried in the shell by the steam is let up to
the vapor space. The vapor leaves through a nozzle at the top, after passing drop
settlers.

Evaporators with external boiler

Some of such constructions are shown in figure ***. The boiler tube’s bundle is
separated from the liquid holder space in each case. Pumping is shown in figures
d and e. Plate heat exchanger is applied in figure e. Descent flow evaporator is
shown in figure f. Here the boiling liquid flows downward in the tubes; this is used
for heat sensitive materials because very short residence time can be achieved.

Fast evaporators

For evaporating very sensitive materials like milk or pharmaceuticals, film evap-
orators are developed. After preheating, the dilute solution is fed to the top of a
vertical cylinder, and flows down is a narrow layer (0.2 to 0.6 mm) on the wall. This
narrow film is maintained by scraping arms fast turned by a motor. The cylinder is
heated from outside, and the volatile solvent evaporates without nucleate boiling.

For evaporating with even shorter residence time, centrifugal evaporators
are developed. One of them is shown in figure ***. The dilute solution is fed
to the inner part of the fast tirning cone and it forms a 0.1 mm wide layer with a
residence time shorter than 1 s. The cone is heated from outside with steam. The
dense solution is collected from the corner part of the cone. The vapor leaves in
the center chimney.

Plate evaporators

Plate evaporators are essentially plate heat exchangers of condenser-boiler type.
The heating steam is fed in a channel at a top corner; the return water is led
out through a bottom corner. The concentrated solution and the vapor leaves the
evaporator at the same hole, and separated in a subsequent unit.

8.3 Multiple effect evaporation

The vapor formed in the evaporation process is ususally condensed in a heat ex-
changer, using cooling water. The condensation heat of the vapor can, however,
also be utilized in another evaporator, as is shown in figure ***. In this case, the
vapor is applied instead of heating steam. This arrangement is usually applied if
the solvent is water.
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By condensing 1 kg steam, approximately 1 kg vapor can, in principle, formed.
The vapor of the second evaporator can also be used as heating medium in a
third evaporator, and again approximately 1 kg vapor could be formed there if
no heat loss had been. However, there are heat losses. For forming 1 kg vapor,
approximately 1.1 kg steam is needed in a single evaporator, 0.57 kg in a double
effect evaporator, 0.4 kg in a triple effect evaporator, etc.

The pressure of the vapor formed in the second unit is lower than that of the
steam. The pressure of the vapor formed in the third unit is even lower. Thus, the
saturation temperature decreases along the series of steam, vapor1, vapor2 etc. For
achieving multiple effect, the last unit should usually be taken under vacuum.

There are co-current and counter-current arrangements. Counter-currency (figure
***) provides good energetic efficiency. In this case the dilute solution enters in
the unit from which the last charge of vapor is removed and then condensed, and
the concentrated solution leaves the unit to which the fresh steam is fed. Thus, the
hottest steam (vapor) is applied to the unit where the boiling point is highest, and
mild vapor can be utilized for evaporating the dilute solution in the first unit, with
low boiling point. Although this can be used for concentrating inorganic solutions,
co-currency (figure ***) is preferred for concentrating organic, heat sensitive ma-
terials. In such cases the concentrated solution is better boiled under vacuum,
providing lower boiling temperature.

8.4 Expansion evaporation

The dilute solution is pressurized and heat up just under its boiling point at the ele-
vated pressure before it is fed to an evaporator under lower pressure. The solution’s
boiling point under theis lower pressure is higher than its actual temperature, and
vaporization occurs without extra heating. This is called expansion evaporation.
This construction is always applied with counter-curent multiple effect arrange-
ment, and frequently used for desalting sea water.

8.5 Vapor compression evaporation

The condensation heat of the vapor can also be utilized in the same unit where
it is formed if the vapor is compressed. Compression of the vapor increases the
boiling (dew) point of the material, and thus it is condensed at higher temperature
than the boiling point of the solution. In this case no fresh steam is needed for
evaporating the liquid. A sketch of such a unit is shown in figure ***. The
energy consumption of this process is approximately 20 to 30 % of the original one.
However, the cost of the electricity is usually higher than that of the steam. The
vapor can also be compressed with steam jet compressor.


