Chemical Process Control
 Auxiliary material for hand calculation practices

General notions

Notation

$\mathrm{t}=$ time
$\mathrm{T}=$ time constant
$\mathrm{s}=$ complex variable

Processes

The process is 'known' if function $\mathrm{y}(\mathrm{t})=f[\mathrm{x}(\mathrm{t})]$ is known.
Equivalent information is given by its transfer function $G(s)$ in Laplace domain:

$$
Y(s)=G(s) \cdot X(s)
$$

Laplace transformation

It transforms any linear differential equation to an ordinary equation.
Two-sided Laplace transformation: $\mathrm{F}(\mathrm{s})=L[f(\mathrm{t})]=\int_{-\infty}^{\infty} f(\mathrm{t}) \cdot \mathrm{e}^{-\mathrm{s} \cdot \mathrm{t}} \cdot d \mathrm{t}$
One-sided Laplace transformation: $\mathrm{F}(\mathrm{s})=L[f(\mathrm{t})]=\int_{0}^{\infty} f(\mathrm{t}) \cdot \mathrm{e}^{-\mathrm{s} \cdot \mathrm{t}} \cdot d \mathrm{t}$, this one is simpler if $f(x)=0$ at $t<0$. This condition is achieved if there is (was) steady state before $t=0$ and deviation variable are used: $\hat{x}(\mathrm{t})=\mathrm{x}(\mathrm{t})-\bar{x}(\mathrm{t})$

Linearity:

$$
a \cdot f(\mathrm{t})+b \cdot g(\mathrm{t}) \xrightarrow{\llcorner } a \cdot \mathrm{~F}(\mathrm{~s})+b \cdot \mathrm{G}(\mathrm{~s})
$$

Useful particular cases:

$$
\begin{aligned}
& y(\mathrm{t}) \xrightarrow{\llcorner } \mathrm{Y}(\mathrm{~s}) \\
& \frac{d y(\mathrm{t})}{d \mathrm{t}} \xrightarrow{\llcorner } \mathrm{S} \cdot \mathrm{Y}(\mathrm{~s})
\end{aligned}
$$

$$
\int y(\mathrm{t}) d \mathrm{t} \xrightarrow{\llcorner } \frac{\mathrm{X}(\mathrm{~s})}{\mathrm{s}}
$$

$$
\left(\delta(\mathrm{t})=\frac{d 1(\mathrm{t})}{d \mathrm{t}}\right) \xrightarrow{\iota} 1 \quad \text { (unit impulse) }
$$

$$
1(\mathrm{t}) \xrightarrow{\llcorner } \frac{1}{\mathrm{~s}} \quad \text { (unit step) }
$$

$$
\left(\mathrm{t}=\int 1(\mathrm{t}) d \mathrm{t}\right) \xrightarrow{\llcorner } \frac{1}{\mathrm{~s}^{2}} \quad \text { (unit slope ramp) }
$$

$$
e^{a \cdot \mathrm{t}} \xrightarrow{\llcorner } \frac{1}{\mathrm{~s}-\mathrm{a}}
$$

I.-II. ORDER ELEMENTS

Proportional element

$$
\begin{aligned}
& \mathrm{y}(\mathrm{t})=\mathrm{A} \cdot \mathrm{x}(\mathrm{t}) \\
& \mathrm{G}(\mathrm{~s})=\frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{X}(\mathrm{~s})}=\mathrm{A}
\end{aligned}
$$

First order element

Differential equation:

$$
\mathrm{T} \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{di}}+\mathrm{y}(\mathrm{t})=\mathrm{A} \cdot \mathrm{x}(\mathrm{t})
$$

Transfer function:

$$
G(s)=\frac{A}{T s+1}
$$

Impulse response:

$$
\hat{y}=\frac{a \cdot A}{T} \cdot e^{-\frac{t}{T}}
$$

Step response:
$\hat{y}=a \cdot A \cdot\left[1-e^{-\frac{t}{T}}\right]$
Ramp response:
$\hat{y}=a \cdot A \cdot T \cdot\left[\frac{t}{T}+e^{-\frac{t}{T}}-1\right]$
${ }^{y}{ }^{y}{ }^{y}=\frac{a \cdot A}{T}$
${ }^{i}$ here i stands for t
Its step response:

$$
\begin{aligned}
& Y(s)=X(s) \cdot G(s)=\frac{a}{s} \cdot \frac{A}{T \cdot s+1} \\
& \hat{y}(i)=a \cdot A \cdot\left[1-e^{-\frac{t}{T}}\right]
\end{aligned}
$$

here i stands for t

Identification from step response

Gain

From how high the response signal increases (in limit)
Time constant: several ways you can do it

1. Sunstitution

From any $t-y(t)$ value pair (a point in the plane) you can calculate it. This is subject to errors.
2. Ratio calculation

If $t=T$ then

$$
\begin{aligned}
& \hat{y}(\mathrm{~T})=\mathrm{a} \cdot \mathrm{~A} \cdot\left[1-\mathrm{e}^{-\frac{\mathrm{T}}{\mathrm{~T}}}\right]=\hat{\mathrm{y}}(\infty) \cdot\left[1-\mathrm{e}^{-1}\right] \\
& \frac{\hat{\mathrm{y}}(\mathrm{~T})}{\hat{\mathrm{y}}(\infty)}=1-\mathrm{e}^{-1} \approx 0.632
\end{aligned}
$$

3. Slope fitting (To any point)

4. Linearization

$$
\begin{aligned}
& \hat{y}(t)=a \cdot A \cdot\left[1-e^{-\frac{t}{T}}\right]=\hat{y}(\infty) \cdot\left[1-e^{-\frac{t}{T}}\right] \\
& \frac{\hat{y}(i)}{\hat{y}(\infty)}=1-e^{-\frac{t}{T}} \\
& \frac{\hat{y}(\infty)-\hat{y}(t)}{\hat{y}(\infty)}=e^{-\frac{t}{T}} \\
& \ln \left[\frac{\hat{y}(\infty)-\hat{y}(t)}{\hat{y}(\infty)}\right]=-\frac{1}{T} \cdot t
\end{aligned}
$$

The process is of first order if the points fall to a straight line, otherwise its behaviour is different.
Slope of the straight line: $-\frac{1}{\mathrm{~T}}$.
This method is best for cancelling measurement errors.
Examples
jacketed vessel, mixed vessel, CSTR, thermometer

Second order element

Differential equations:

$$
T_{2}^{2} \frac{d y^{2}(t)}{d t^{2}}+T_{1} \frac{d y(t)}{d t}+y(t)=A \cdot x(t) \quad T^{2} \frac{d y^{2}(t)}{d t^{2}}+2 \xi T \frac{d y(t)}{d t}+y(t)=A \cdot x(t)
$$

Transfer functions:

$$
G(s)=\frac{A}{T_{2}^{2} s^{2}+T_{1} s+1} \quad G(s)=\frac{A}{T^{2} s^{2}+2 \xi T s+1}
$$

	Impulse responses	Step responses
$\xi<1$	$\hat{\mathrm{y}}=\mathrm{a} \cdot \mathrm{A} \cdot\left[\frac{1}{\omega \mathrm{~T}^{2}} \mathrm{e}^{\alpha \mathrm{t}} \sin (\omega \mathrm{t})\right]$	$\hat{\mathrm{y}}=\mathrm{a} \cdot \mathrm{A} \cdot\left[1-\mathrm{e}^{\alpha \mathrm{t}}\left(\cos (\omega \mathrm{t})+\frac{\alpha}{\omega} \sin (\omega \mathrm{t})\right)\right]$
where $\alpha=\frac{\xi}{\mathrm{T}}$ and $\omega=\frac{1}{\mathrm{~T}} \sqrt{1-\xi^{2}}$	where $\alpha=\frac{\xi}{\mathrm{T}}$ and $\omega=\frac{1}{\mathrm{~T}} \sqrt{1-\xi^{2}}$	
$\xi=1$	$\hat{\mathrm{y}}=\mathrm{a} \cdot \mathrm{A} \cdot\left[\frac{1}{\mathrm{~T}^{2}} \cdot \mathrm{t} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{T}}}\right]$	$\hat{\mathrm{y}}=\mathrm{a} \cdot \mathrm{A} \cdot\left[1-\mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{T}}}\left(1+\frac{1}{\mathrm{~T}}\right)\right]$
$\xi>1$	$\hat{\mathrm{y}}=\mathrm{a} \cdot \mathrm{A} \cdot \frac{1}{\mathrm{~T}_{1}-\mathrm{T}_{2}}\left[\mathrm{e}^{-\frac{\mathrm{t}}{T_{1}}}-\mathrm{e}^{-\frac{\mathrm{t}}{T_{2}}}\right]$	$\hat{\mathrm{y}}=\mathrm{a} \cdot \mathrm{A} \cdot\left[1-\frac{1}{\mathrm{~T}_{1}-\mathrm{T}_{2}}\left(\mathrm{~T}_{1} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{T}_{1}}}-\mathrm{T}_{2} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{T_{2}}}\right)\right]$

$\xi<1$ underdamped, $\quad \xi=1 \quad$ critically damped, $\quad \xi>1 \quad$ overdamped
Two basic classes:

1. intrinsic second order elements
2. elements obtained by consecutively connecting two first order elements

- with equal time constants: $\xi=1$
- with unequal time constants: $\xi>1$

Its impulse response:

Its step response:

VALVES

Maximum throughput at given pressure drop on the valve

$$
\text { definition of } k_{v, \max }: \quad W_{\max }=k_{v, \max } \sqrt{\frac{\Delta \mathrm{p}_{\mathrm{rel}}}{\rho_{\mathrm{rel}}}}
$$

where $k_{v, \max }$ - water flow rate throught perfectly open valve for 1 bar pressure drop over it.
definitions: $\quad \Delta \mathrm{p}_{\text {rel }}=\frac{\Delta \mathrm{p}_{\text {valve }}}{\Delta \mathrm{p}_{\text {atm }}}=\frac{\Delta \mathrm{p}_{\text {valve }}}{1 \mathrm{bar}} \quad \rho_{\text {rel }}=\frac{\rho}{\rho_{\text {water }, 20^{\circ} \mathrm{C}}}=\frac{\rho}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}$
$\mathrm{W}_{\text {max }}$ is not constant but depends on pressure drop and density!
Throuput characteristics:
Linear: $\quad \frac{W}{W_{\max }}=\frac{H}{H_{\max }}=h \quad$ (this is definition of h)

Square root:

$$
\frac{\mathrm{W}}{\mathrm{~W}_{\max }}=\sqrt{\frac{\mathrm{H}}{\mathrm{H}_{\max }}}=\sqrt{\mathrm{h}}
$$

Exponential:

$$
\begin{equation*}
\frac{W}{W_{\max }}=\frac{1}{e^{n}} \cdot e^{n \cdot \frac{H}{H_{\max }}}=\frac{1}{e^{n}} \cdot e^{n \cdot h} \tag{n=1..3}
\end{equation*}
$$

Non-linearity of the process can be offset with properly selected valves.
Valve in pipeline:
Total pressure drop: $\quad \Delta \mathrm{p}_{\text {total }}=\Delta \mathrm{p}_{\text {pipe }}+\Delta \mathrm{p}_{\text {valve }}$
Due to friction: $\quad \Delta \mathrm{p}_{\text {valve }}=\mathrm{B} \cdot \mathrm{W}^{2} \quad$ (assume turbulent flow)

CONTROL LOOPS

Block scheme If the process reacts to d as m, then a simplified block scheme can be used:

Level control

Outflow flow rate is manipulated variable, and inflow flow rate is disturbance.
Process:

$$
\begin{array}{lr}
\begin{array}{c}
\text { Free outflow tank } \\
\text { first order element }
\end{array} & \begin{array}{c}
\text { Forced outflow tank } \\
\text { integrating element }
\end{array} \\
\mathrm{G}_{\mathrm{p}}(\mathrm{~s})=\frac{\mathrm{h}(\mathrm{~s})}{\mathrm{W}_{\text {in }}(\mathrm{s})}=\frac{A}{\mathrm{~T} \cdot \mathrm{~s}+1} & \mathrm{G}_{\mathrm{p}}(\mathrm{~s})=\frac{\mathrm{h}(\mathrm{~s})}{\mathrm{W}_{\text {in }}(\mathrm{s})}=\frac{A}{\mathrm{~s}}
\end{array}
$$

Transmitter - Proportional element
Controller - P controller (proportional element)
Actuator - Valve with linear working characteristic, proportional element

Closed loop transfer functions:

Forced outflow tank

Input flow rate \Rightarrow liquid level:

$$
\begin{aligned}
& G^{*}(s)=\frac{h(s)}{W_{\text {in }}(s)}=\frac{c(s)}{d(s)}=\frac{G_{P}(s)}{1+G_{P}(s) \cdot G_{T r}(s) \cdot G_{C}(s) \cdot G_{A C}(s)}=\frac{\frac{A_{P}}{s}}{1+\frac{A_{P}}{s} \cdot A_{T r} \cdot A_{P} \cdot A_{A C}} \\
& G^{*}(s)=\frac{A_{P}}{S+A_{P} \cdot A_{T r} \cdot A_{C} \cdot A_{A C}}=\frac{\frac{A_{P}}{A_{P} \cdot A_{T r} \cdot A_{C} \cdot A_{A C}}}{\frac{1}{A_{P} \cdot A_{T r} \cdot A_{C} \cdot A_{A C}} \cdot s+1}=\frac{\frac{1}{A_{T r} \cdot A_{C} \cdot A_{A C}}}{\frac{1}{A_{P} \cdot A_{T r} \cdot A_{C} \cdot A_{A C}} \cdot s+1}=\frac{A^{*}}{T^{*} \cdot S+1}
\end{aligned}
$$

Free outflow tank

Input flow rate \Rightarrow liquid level:

$$
\begin{aligned}
& G^{*}(s)=\frac{h(s)}{W_{\text {in }}(s)}=\frac{c(s)}{d(s)}=\frac{G_{P}(s)}{1+G_{P}(s) \cdot G_{T r}(s) \cdot G_{C}(s) \cdot G_{A C}(s)}=\frac{\frac{A_{P}}{T_{P} \cdot s+1}}{1+\frac{A_{P}}{T_{P} \cdot s+1} \cdot A_{T r} \cdot A_{C} \cdot A_{A c}} \\
& G^{*}(s)=\frac{A_{P}}{T_{P} \cdot s+1+A_{P} \cdot A_{T r} \cdot A_{C} \cdot A_{A c}}=\frac{\frac{A_{P}}{1+A_{P} \cdot A_{T r} \cdot A_{C} \cdot A_{A C}}}{\frac{T_{P}}{1+A_{P} \cdot A_{T r} \cdot A_{C} \cdot A_{A c}} \cdot s+1}=\frac{A^{*}}{T^{*} \cdot s+1}
\end{aligned}
$$

FREQUENCY ANALYSIS

Frequency function from transfer function

$$
\mathrm{G}(\mathrm{~s}) \rightarrow \mathrm{G}(\mathrm{j} \omega)
$$

Nyquist diagram

Bode diagram

One point of the frequency function

$$
\begin{aligned}
& \mathrm{G}(\mathrm{j} \omega)=\langle\operatorname{Re}\rangle+\mathrm{j} \cdot\langle\mathrm{Im}\rangle \\
& |\mathrm{G}(\mathrm{j} \omega)|=\sqrt{\langle\operatorname{Re}\rangle^{2}+\langle\mathrm{Im}\rangle^{2}}
\end{aligned} \quad \varphi=\arctan \frac{\langle\mathrm{Im}\rangle}{\langle\mathrm{Re}\rangle}
$$

Consecutively connected elements:

$$
\begin{aligned}
& \mathrm{G}^{*}(\mathrm{~s})=\Pi \mathrm{G}_{\mathrm{i}}(\mathrm{~s}) \\
& \mathrm{G}^{*}(\mathrm{j} \omega)=\Pi \mathrm{G}_{\mathrm{i}}(\mathrm{j} \omega) \\
& \left|\mathrm{G}^{*}(\mathrm{j} \omega)\right|=\Pi\left|\mathrm{G}_{\mathrm{i}}(\mathrm{j} \omega)\right|
\end{aligned}
$$

Frequency functions of basic elements

	$\mathrm{G}(\mathrm{s})$	$\|\mathrm{G}(\mathrm{i} \cdot \omega)\|$	φ
1st order	$\frac{\mathrm{A}}{\mathrm{Ts}+1}$	$\frac{\|\mathrm{~A}\|}{\sqrt{1+\omega^{2} \mathrm{~T}^{2}}}$	$\arctan (-\omega \mathrm{T})$
2nd order	$\frac{\mathrm{A}}{\mathrm{T}^{2} \mathrm{~s}^{2}+2 \xi \mathrm{~T}+1}$	$\frac{\|\mathrm{~A}\|}{\sqrt{\left(1-\omega^{2} \mathrm{~T}^{2}\right)+(2 \xi T \omega)^{2}}}$	$\arctan \left(\frac{2 \xi \omega \mathrm{~T}}{1-\omega^{2} \mathrm{~T}^{2}}\right)$
Dead time	$\mathrm{A} \cdot \mathrm{e}^{-\mathrm{D}_{0} \cdot \mathrm{~s}}$	A	$-\omega \cdot \mathrm{T}_{\mathrm{D}}$
I	$\frac{\mathrm{A}_{1}}{\mathrm{~s}}=\frac{1}{\mathrm{l} \cdot \mathrm{s}}$	$\frac{\mathrm{A}_{\mathrm{I}}}{\omega}=\frac{1}{1 \cdot \omega}$	-90°
PI	$\mathrm{A}_{\mathrm{C}} \cdot\left(1+\frac{1}{\mathrm{I} \cdot \mathrm{s}}\right)$	$\mathrm{A}_{\mathrm{C}} \cdot \sqrt{1+\frac{1}{1^{2} \cdot \omega^{2}}}$	
PID	$\mathrm{A}_{\mathrm{C}} \cdot\left(1+\frac{1}{1 \cdot \mathrm{~s}}+\mathrm{D} \cdot \mathrm{s}\right)$		

Terms

Controlled section: Everything in the loop without the controller itself Open loop: Everything in the loop including the controller too

Critical values

Frequency function of the controlled section $\rightarrow 1 /$ critical gain of the section at -180°.
Frequency function of the open loop with P controller and critical gain intersects -1 .
Frequency function reaches -180° at ritical frequency.

Tuning
Ziegler-Nichols' suggested tuning based on closed loop cycling or open loop transfer function

	A_{C}	I	D
P	$\mathrm{A}_{\mathrm{C}} \leq 0.5 \cdot \mathrm{~A}_{\mathrm{C}, \text { crit }}$	∞	0
PI	$\mathrm{A}_{\mathrm{C}} \leq 0.45 \cdot \mathrm{~A}_{\mathrm{c}, \text { crit }}$	$\mathrm{I} \geq 0.8 \cdot \mathrm{~T}_{\text {crit }}$	0
PID	$\mathrm{A}_{\mathrm{C}} \leq 0.6 \cdot \mathrm{~A}_{\mathrm{C}, \text { crit }}$	$\mathrm{I} \geq 0.5 \cdot \mathrm{~T}_{\text {crit }}$	$\mathrm{D}<0.125 \cdot \mathrm{~T}_{\text {crit }}$

Margins

Phase margin: phase lag of the open loop at amplitude ratio 1 is how much less then (the critical) 180°.

Gain margin: amplitude ratio of the open loop at (the critical) phase lag 180°.

