Distillation and evaporation in general

- Distillation/evaporation processes:
 - Separate or undilute solutions (mixtures) based on the different volatilities of the components

- Limit of atmospheric operation:
 - thermal sensitivity, decomposition under boiling temperature

- Solution:
 - different kinds of vacuum distillation
“Evolution steps” of vacuum distillers, evaporators

- **Batch vacuum distillation**
 - Distillation below 1 mbar
 - Low temperature: gentle handling (max. 250 °C)
 - No thermal decomposition

- **Falling film evaporator**
 - Vertical, polished evaporator surface
 - Internal cooler
 - Roller wiper
 - Expensive technique

- **Wiped film evaporators**
“Evolution steps” of vacuum distillers, evaporators

- Batch vacuum distillation
- Falling film evaporator
- Wiped film evaporators

- Distillation below 1 mbar
- Low temperature: gentle handling (max. 250 °C)
- No thermal decomposition
- Vertical, polished evaporator surface
- Internal cooler
- Roller wiper
- Expensive technique
Falling film evaporator
„Evolution steps” of vacuum distillers, evaporators

- Batch vacuum distillation
- Falling film evaporator
- Wiped film evaporators

- Distillation below 1 mbar
- Low temperature: gentle handling (max. 250 °C)
- No thermal decomposition

- Vertical, polished evaporator surface
- Internal cooler
- Roller wiper
- Expensive technique
Wiped film evaporators
"Evolution steps" of vacuum distillers, evaporators

- Distillation below 1 mbar
- Low temperature: gentle handling (max. 250 °C)
- No thermal decomposition

- Vertical, polished evaporator surface
- Internal cooler
- Roller wiper
- Expensive technique
Roller-wiper system

- Vertical and horizontal mixing
- Very thin film (<1 mm)
 - Optimal heat transfer
- Low mechanical gear (lightweight)
- Material
 - Fiber-glass reinforced PTFE
 - Graphite
- Self-cleaning ability

Heating, cooling

- Use of preheater
- Heat recovery?
- External steam-heated coat (Thermal sheet)
- Heated pumps and product outlets
The condenser

- Main part of vacuum formation (regulation)
- Condensation just above melting temperature
- Theoretical optimum not feasible
- Problem of freezing product: multiple parallel evaporators
- Leakage

Vacuum system

- Only to evacuate non condensable gases
- Generally consists of Roots-blowers and diffusion pumps
Scale up process steps:

Laboratory
- After computer simulation
- Borosilicate glass
- Visual observation
- Feasibility studies
- 0.02 m² evaporator surface
- 0.1-0.8 kg/h feed rate
- Computer aided

Pilot
- Stainless steel
- 0.06 m² evaporator surface
- Feed rate: 3-9 kg/h
- Often took over by manufacturer

Industrial:
- Residence time: maximum 20 s
- Evaporator surface: 50 m²
- 11.6 m high 2 m diameter
- 5000 kg/h capacity
Scale up - Laboratory

- After computer simulation
- Borosilicate glass
- Visual observation
- Feasibility studies
- 0,02 m² evaporator surface
- 0,1-0,8 kg/h feed rate
- Computer aided
Scale up process steps:

Laboratory
- After computer simulation
- Borosilicate glass
- Visual observation
- Feasibility studies
- 0.02 m2 evaporator surface
- 0.1-0.8 kg/h feed rate
- Computer aided

Pilot
- Stainless steel
- 0.06 m2 evaporator surface
- Feed rate: 3-9 kg/h
- Often took over by manufacturer

Industrial:
- Residence time: maximum 20 s
- Evaporator surface: 50 m2
- 11.6 m high 2 m diameter
- 5000 kg/h capacity
Scale up - Pilot

- Stainless steel
- 0.06 m² evaporator surface
- Feed rate: 3-9 kg/h
- Often took over by manufacturer
Scale up process steps:

Laboratory
- After computer simulation
- Borosilicate glass
- Visual observation
- Feasibility studies
- 0.02 m² evaporator surface
- 0.1-0.8 kg/h feed rate
- Computer aided

Pilot
- Stainless steel
- 0.06 m² evaporator surface
- Feed rate: 3-9 kg/h
- Often took over by manufacturer

Industrial:
- Residence time: maximum 20 s
- Evaporator surface: 50 m²
- 11.6 m high 2 m diameter
- 5000 kg/h capacity
Scale up – big industrial

- Residence time: maximum 20 s
- Evaporator surface: 0,3-50 m²
- 11,6 m high 2 m diameter
- 30-5000 kg/h capacity
<table>
<thead>
<tr>
<th>Operation</th>
<th>Atm distillation</th>
<th>Vacuum distillation</th>
<th>Film evaporator</th>
<th>Short-path distillation</th>
<th>Molecular distillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (Pa)</td>
<td>10^5</td>
<td>10^3</td>
<td>10^2</td>
<td>0.1</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Residence time (s)</td>
<td>4000</td>
<td>3000</td>
<td>25</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Use cases</td>
<td>Petroleum industry</td>
<td>Petroleum industry</td>
<td>Pharmaceutical Industry</td>
<td>Lanolin cleaning</td>
<td>Plastic softeners</td>
</tr>
<tr>
<td></td>
<td>Laboratory Industry</td>
<td>Laboratory Industry</td>
<td>Oil production</td>
<td>Fish oil</td>
<td>Vacuum oil</td>
</tr>
<tr>
<td></td>
<td>Heat sensitive materials</td>
<td>Chemical industry</td>
<td>Food industry</td>
<td>Butter</td>
<td>Separation of fatty acids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pepper oil</td>
<td>Separation of dyes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vitamins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silicone oils</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alcohols</td>
</tr>
</tbody>
</table>
Bibliography:

• UIC Short path vacuum distillation from laboratory to production
• Buss-SMS GmbH Feinvakuum Verdampfungsanlagen - Fragen und Antworten
• Verfahrenstechnische Anlagen GmbH - Kurzweg-Destillation
• UIC - Computer-gesteuerte Kurzweg-Destillationsanlage für das Labor
• UIC - Competence in Vacuum distillation, thin film distillation, short path distillation
• UIC-News Kurzweg-Destillation 1996.
• UIC News 1997 december, april; 2001 december