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FULL FACTORIAL DESIGNS

E IN STATISTICA

1. GENERATING TWO-LEVEL DESIGNS

We will now outline the necessary steps for generating a full factorial two level design. Let us
assume that we want to design an experiment that allows us to test the significance of reaction
time (factor TIME) and temperature (factor DEGREES) on the yield of a chemical process.

Reaction time can vary between 80 and 100 minutes, whereas temperature varies between 140

and 150 degrees Fahrenheit.
1. Start by opening any *.sta data file, if one is not already on your screen. Then, from the

Statistics - Industrial Statistics & Six Sigma menu, select Experimental Design (DOE).
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On the Quick tab of the Design & Analysis of Experiments (Startup Panel), select
2**(K-p) standard designs (Box, Hunter, & Hunter).
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3. Click the oK button to display the Design & Analysis of Experiments with Two-Level
Factors dialog.

T Design & Analysis of Experiments with Two-Level Factors: 10ltems [EIME3

Clesign experment | Analyze design |

Mumber of factors [min=2, max=11]: |4 Cancel |
Factors/blocks/uns:
Select here the standard type of E Options » |

design; replications, additional
points, labels, ete., can be
zpecified on the nest dialog. Use
the Twa-lewel sereening designs
option (on the startup panel) for
additional highly fractionalized
{Plackett-Burman) designs .

Resolution: %

¥ Generate design in Box, Hunter, & Hunter order Hen © | o v |

In this dialog, you can specify whether you want to design an experiment or analyze the
results of an existing experiment by using the tabs. For now, make sure that the Design
experiment tab is selected.

4. Inthe Number of factors edit field, enter the number of factors that you want to include in
the design (2 in our case). Note that the number of runs and blocks (if a blocking factor is
used) for a standard design is automatically determined when you enter the number of fac-
tors. For example, when designing an experiment with four factors, the option 4/1/8
allows us to analyze 4 factors in one single block with 8 runs; the option 4/2/16 would
allow us to analyze 4 factors in 2 blocks with 16 runs, and so on. For now, enter a value of
2 in the edit field. The only available option (2/1/4) will allow us to create a standard
design with four runs for two factors in a single block.

5. Click ok to display the results dialog.

% Design of an Experiment with Two-Level Factors: 10ltems

DESICH SUMMALY (standard design): E¥*(Z-0) design of resclution I = FULL

Mumber of factors (independent wariables): £
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The summary box (the upper area of the results dialog) contains a description of the key
elements of the design (number of factors and runs, etc.) for the standard design that we
have just created.



6. Click the Change factor names, values, etc. button, and in the resulting dialog, replace the
default high and low values with the names and settings for the two factors TIME and
DEGREES. When you are done, the spreadsheet should look as follows:

Summary for Y¥anables [Factors] EHE

Summary for Yanables (Factors)
Ta change [abels, values, &tc., typs in the
desired changes, then click 0K,

Factor | Factor | Low | Low | High | High |C/Q Cont
Mame |VYalue | Label | %alue | Label | or Clual.
A (1) |TIME B0l ow 100|High | ©

(2] |DEGREES 140 | Lo 150|High

Note that, in the last column you can specify whether the respective factor is continuous
or categorical (qualitative) in nature by setting a flag C (for continuous) or Q (for
qualitative). These settings will typically affect the number of center points that can be
added to the design. However, since our two factors are continuous, leave the default
settings for now, and click OK.

7. Since we want to be able to test for statistical significance, we should add either replicates
or center points to the design. Additionally, we can add blank columns to the design that
can be later used to record the measurements for the response variable(s). All these
options are available on the Add to design tab. Select the Add to design tab, and enter a
value of 2 in the Number of center points edit field and a value of 1 in the Number of blank
columns edit field.

8. Before we display the final design, we can choose to randomize the run order. Therefore,
click on the Display design tab and under Order of runs select the Random option button.
The value in the Seed field can be used to control how the randomization is done in
repeated experimentation. If you always want to have a certain random order, you should
make sure that the same seed value is used every time. However, most likely you want to
leave the default setting (which will be different for every STATISTICA session).

9. To display the final design with the correct factor names and levels, under Denote factors
select the By names option button, and under Show (in Spreadsheet) select the
Mini/maxima option button.

10. Then click the Summary: Display design button.



B Data: Design: 2==(2-0) design (... =] E3

Design: 2™(2-0) design (10ltem
Standard | TIME |DEGREES|D%_1
Run
3 | 80.00001 150.0000
B (C) 50.0000 145.0000 0
5(C) 90.0000 145.0000 ||
4 100.0000  150.0000 U
2 100.0000  140.0000 | |
1

80.0000  140.0000 || -|
I
I I : I A

(Note that your design may be in a different order due to the random order.)

The design contains the individual settings for the two factors TIME and DEGREES with
each row representing an individual run. The original run number is displayed in the first
column with a (C) after the run number indicating a Center Point run.

11. In order to analyze the design in STATISTICA once the measurements of the experiments
have been obtained, save this design as a STATISTICA data file. To do this, select Save As
from the File menu and specify an appropriate file name (e.g., 2level.sta). Click the Save
button.

2. ANALYZING TWO-LEVEL DESIGNS

We will now continue the previous example and assume that the following measurements for
variable YIELD have been observed for the design that we generated.

TIME DEGREES YIELD
80.000 140.000 78.8
100.000 140.000 84.5
80.000 150.000 91.2
100.000 150.000 77.4
90.000 145.000 89.7
90.000 145.000 86.8

The following section describes the necessary steps for entering these values in the data file
previously created and running an analysis for this experimental design.

Specifying the Design to Analyze

1. From the File menu choose Open and select the file that you previously saved (i.e.,
2level.sta). Click open.

2. Before you enter the measurements, change the default name for the response variable
(DV_1). Double-click on the variable header for variable DV_1 to display the Variable 3
dialog and replace the name DV_1 with YIELD.
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3. Then click OK to return to the spreadsheet and enter the values from the table above into
the YIELD column. (Keep in mind that the run order was randomized and make sure that

you enter the values in the correct order.) When you are done, the spreadsheet should look
similar to the following:

fEf Data: levelsta Hi=] E3
Design: Z272-0) design

Standard | TIME |DEGREES| YIELD

Run

3 800000 1500000 51.20

B () 80.0000) 1450000

5(C) 80.0000) 1450000

4 100.0000  150.0000

2 100.0000  140.0000

1 80.0000) 140.0000

1]

4. Save your changes to the data file. Then, from the Statistics - Industrial Statistics & Six
Sigma menu, select Experimental Design (DOE). Highlight 2**(K-p) standard designs (Box,
Hunter, & Hunter) and click OK. Select the Analyze design tab.
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This dialog is used to specify the dependent and independent variables in the design as
well as the blocking variable (if any).

5. Click the variables button and select variable YIELD in the first variable selection list
(Dependent variable) and variables TIME and DEGREES in the second list (Independent
variables). Since we ran the experiment in a single block, we can ignore the third variable
list (Blocking variable) for now, and click OK to return to the specification dialog. The
dialog should now update the No. of unique non-center-point runs and Total number of
runs information.

6. Click ok to run the analysis and display the results dialog.

2 Analysis of an Experiment with Two-Level Factors: 2level ﬂ!ﬂ

DESTIGN STUMMARY (standard design): Z**(Z-0), PResclution R=FULL
Mumher of factors (independent wvariahles): Z

Mumber of runs (standard experiment): 4

Total numker of runs in experiment: & {2 center points)
Mumber of blocks: 1

Fractional replications: Full factorial

Mumber of replications: 0 - 1

Y aratlE: |Y|ELD 'I (4 Brintresults | I A variaties

Review/zave residuals I Fesidual plots I Box-Cox I Prediction & profiling Cancel |
Quick |  Model | Design | ANOVAEffects | Means
AR ONA Predicted [estimated) means———————— Ml
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These results are for the cument model; wou can change the model (@dd or remone interaction effects)
on the hodel tab.

In the remainder of this section, we will examine the individual results of the analysis.

Analyzing the Results

1. We could start by displaying the design. Select the Design tab and click the Display design
and observed means button.

B Data: Design: 2=*[2-0] design [2level]

Design: 27(2-0) design iZlevel)
D-Design [ TIME |DEGREES| YIELD YIELD |YIELD | -95 % +95 %
C-Center | {(Cont.) (Caont.) Means | Std.Dey. N Crf.Limt | Cnf Limt
1 80.0000 140.0000) 78.80000 0.000000 1
2 80.0000  150.0000) 91.20000  0.000000 1
3 90.0000 0 145.0000 88.26000 2.D5EIE1EI| 2_' £9.82600 1066740 F
4 100.0000  140.0000 84.50000 0.000000 1
] 100.0000  150.0000 77 40000 0.000000 1 i
All Funs 84.73333 5.653200 G| 78.80056 BD.EEED_!|L|
AER AW



This spreadsheet summarizes the design by listing the individual factor settings for the
unique factor level combinations (design cells). It also contains descriptive statistics
(means, standard deviations, and confidence limits) for the response variable.

This information allows you to see whether you can test the statistical significance of the
individual effects. In particular, the fifth column (YIELD N) indicates the number of
observations per design cell. It is important that at least one design cell has more than one
observation in order to obtain an estimate for the error (inherent variation of the response
variable). If the number of observations for each design cell was 1, the error term could
not be computed and the resulting ANOVA table would not provide any F or p-values at
all. In our case, two center points were added to the design, and thus we can estimate an
error term and use this information for statistical significance testing. For now, resume the
analysis by clicking the Analysis of an Experiment button on the Analysis toolbar to return
to the results dialog.

. When analyzing the results of an experimental design, you would typically strive to use a
model that is as simple as possible, but still yields a sufficient explanation of the response
variation. The complexity of the model that can be analyzed will also be limited by the
number of runs (the larger the number of runs, the more complex the model can be). The
model complexity can be controlled via the options on the Model tab under Include in
model. To start with a simple model, select the No interactions options button.

To investigate the effects, return to the Quick tab and click the ANOVA table button.

B Data: ANDVA: Var.-YIELD; R-sqr=_1466; Adj:0. (2level) [H[=]E3
AMNOWA: War YIELD; R-sqr=.1466; Adj:0. (Zlevel)
272-00 design; MS Residual=45.45611
O YIELD
SS  [di] MS F n l
Factor
{(NTIME [ 16.40251 1] 16.40250) 0.360843  0.590390
(2DEGREES| 7.0225 1 7.02250 0.154490 0.720547 B
Error 136.3683 1 3 45.45611
Total 55 1597933 5 I -
NER Y

As indicated by the high p-values, none of the two main effects TIME and DEGREES
approaches statistical significance. The R-square value listed in the spreadsheet Header
indicates the proportion of variation in the response variable that is explained by the
current model. The low value of 0.1466 indicates that the current model explains only
14.66% of the variation in the response variable, and we can try to include additional
terms into the model to increase the R-square value.

Note that the R-square value will never decrease by including additional terms in the
design (even if those terms contained completely random information). Therefore, it is
typically good practice to also examine the Adjusted R-square value (approximately 0 in
our example) that adjusts the original R-square for including any unnecessary terms in the
design. For now, resume the analysis to return to the results dialog.

. We will now increase the model complexity by including the two-way interaction between
TIME and DEGREES. Select the Model tab, and under Include in model select the 2-way
interactions option button. On the Quick tab, click the ANOVA table button.



Ef Data: ANOVA: Var-YIELD: R-sqr=_7415; Adj:.35376... [H[=] E3
AMNOWA War YIELD, R-sqr=.7415; Adj: 35376
27(2-0) design; M2 Residual=20 B5252
Lt YIELD
SS [df| MS F P I
Factor
()TIME [ 16.4025] 1 16.40250 0.794195 0.466367
(IDEGREES| 7.0225 1 7.02250 0.340025 0.615307 B8
1hby2 950625 1 9506250 4602861 0165074 I8
Etror 41,3058 2 2065292
Tatal 55 1897933 &5 B-
AER 2

By including the two-way interaction between the two factors (row 1 by 2 in the table) the
R-square value increased to 0.7415. However, neither of the effects is significant.

Since our design includes center points, we can try to increase the model complexity
further by introducing a curvature effect. If the curvature effect is significant, this will
indicate that a linear model is not sufficient to describe the underlying relationship.
Resume the analysis and click on the Model tab, and select the Curvature check check box.

Then click the ANOVA table button on the Quick tab.

Ef Data: ANDVA: Var-YIELD: R-sqi=_97368; Adj: 8684 [Hi[=] E3

ANOWA, War  YIELD; R-sqr=97365; Adj:.0b84z

2712-0) design; MS Residual=4.205

D YIELD

SS  [df| MS F P I

Factor
Curvatr. [ 371008l 1) 3710083 2.82303 0.206737
(MTIME 16.40250 1 16.40250 0 3.90071 IZI.29EBBD.
(ZDEGREEES| 7.0225 1 702250 1.67004 IZI.41925EE.
1 by 2 060625 1 9505250 2260702 III.1319?'EI.
Ertor 42050 1 4.20500 .
Tatal 55 1597933 &5 B-
i i

By including the curvature effect, we are able to explain approximately 97% of the
response variation as indicated by the R-square value listed in the spreadsheet Header. At
the same time though, none of the effects are significant. We will later see how we can
augment our design and use a different design type to find an alternative way of analyzing
the data. For now, we will simply accept the current design and look at some of the typical
results of an analysis. Resume the analysis to return to the results dialog.

For example, in order to obtain the magnitude for the effect size of the individual effects,
click the Summary: Effect estimates button on the Quick tab.



[ Data: Effect Estimates: Var.-YIELD: R-sqr=97368; Adj:.B6842 [2level)
Effect Estimates; “ar.:Y|IELD; R-sqr=97363; Ad: 86042 (2level)
2702407 design; MS Residual=4.205
Dy YIELD
Effect | Std Em (1) ] 95, % +395. % Coefl. | Std.
Factor Crf. Limt | ©nf Limt Ca
Mean/Interc. |52 975000 1.025305 80.92715| 0.007866| £9.9473| 95.00273( 82.97500] 1.02:
Curvatr. 1055000 3551760 297036 0.206737 -34.5794 55 B7933| 527500 1.77
(MTIME -4.05000) 2.050610) -1.97502 0.295380 -30.1055 22.00547) -2.02500 1.02:
[(ZIDEGREES | 265000 20506100 1.29230 0419255 -23.4055 28.70547| 1.32500 1.02
1 by 2 975000 2050610 -4.75468 0131970 -35.8055 16.50547( -4.57500 1.0
: I N S ——ﬂ

This spreadsheet shows the effect size for the individual effects in the first column. Also
reported are statistical significance tests and confidence limits for these effects. The Coeff.
column contains the regression coefficients for the coded model (i.e., where the factor
settings are coded as +1/-1).

In our current model, only the test for the Mean/Interc. row for testing the grand mean is
significant (which is always the case) and none of the factors in the design seem to affect
the response variable as was already indicated in the ANOVA table. Resume the analysis
(press CTRL+R).

You can also look at the regression coefficients for the (uncoded) model that uses the
original factor settings by clicking the Regression coefficients button on the
ANOVA/Effects tab.

B Data: Regr. Coefficients; Yar.-YIELD;: R-sqr=_97368; Adji: 86842 [2level] | _ O] x|
Regr. Coefiicients; War.:YIELD; R-sqr=.97368; Adj: B6842 (Zlevel)
27(2-0) design; MS Residual=4.205
O%: YIELD
Regressn | Std.Err. (1) P -95. % +35. % I
Factaor Coeff. Cnf.Limt | Chf Limt
Mean/Interc. | -1209.601269.4114| -4.48979 0139516 -4632.80| 2213.596
Curvatr, 528 17789 297036 0206737  -17.29  27.840 0
(MTIME 1394 29752 4633800133909 -2357 517300
[2IDEGREES 904 18569 4.86531 0128974 1455 32634
1 by 2 010 00205 -4.75468 0131970 -0.36 0.163 B~
1Kl vl

These coefficients could be useful to predict the response for a certain combination of
factor levels, given our current model. Again, none of the coefficients for the individual
effects is significant. Press CTRL+R to return to the results dialog.

To look at the (marginal) means for the individual effects, click the Display button under
Observed marginal means on the Quick tab. You will be prompted to select the factors,
and you can select both factors at the same time to look at the means for the interaction
effect.



10.

E# Data: Marginal Means [Unweighted]: variable: YIELD [2level]

Marginal Means (Unweighted); variable: YIELD (Zlevel)

Design: 27(2-0) design

MOTE: Std Errs. far means computed fram MS Error=4.205

TIME |DEGREES| Means | Fooled | Overall |M| Std.Er. | -95.% +35.% I

Std. Dev. | Std. Dev. for Mean | Cnf Lirnt | Cnf Limt

c0. 140, 78.80000 0.00 000 1) 2.050810 52.74453) 104.8555

g0. 150. 91 20000 0.00 0.0o) 1) 2.050610 65.14453 11?’.2555.
100. 140, 84 50000 0.00 0.0a) 1) 2.050810 55.44453 110.5555.
100. 150. 7740000 0.0o 000 1 2050610 51.34453 103.1'-155:5Iv
I Yy

Alternatively, we can visualize the interactions using a line plot of those means. Resume
the analysis. Click the Means plot button on the Quick tab. First you will need to select the
factors. Again, select both factors at the same time to produce a plot for the interaction.
On the Arrangement of Factors dialog, specify the arrangement of factors.

Arrangement of Factors
H-awis, Lpper Line pattern

TIME
Cancel |

Specify the
amangement of the
factors in the plot.

Select TIME in the x-axis, upper box and DEGREES in the Line pattern box. Click OK to
produce the plot.

w2 Plot of Marginal Means and Conf. Limits [95.%) [_ (O] x|
Plat of Manginal Means and Conf. Limiss (95.%)
OA: YIELD
Dl 24 2-00) clesicyn

MIOTE: 244 Erre_ for maans campuiad fram WS Brar=4 X065

120

¥IELD

2 ul 100
TIME

The lack of parallelism between the two lines indicates some degree of interaction
between the factors. However, as we have seen in the ANOVA table, this interaction
effect is not significant.

Resume the analysis. We can also visualize the design in a plot of the different factor level
combinations. Click the Square plot of predicted means button and select the same factor
arrangement as in the previous step to produce such a plot.



11.
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- p2 R S -
me Predicted Means for Yanable: YIELD [_ O] x|
Prediciead beans for Varabls: YIELD
2% 2-0) dessigr; M S Resichunl=4 205
Mol cached imciucies:: Il ain ediacis, 2oty linder
{95.%, confidancs inarvals ans shown in pananihebe)
913 |65 14,117 26 7 4151 34 4 0ELAE
1500000 J12_.‘-:\-1r 11726} 77 _:\-1;_.'-1..|-F.'-_
w0
=
o
THA {52 34, 104 58] B4 5 (5844 110L56)
140000 o A
000K 1000
TIME

The plot displays the observed values (or means, if there is more than one observation for
each level combination) of the response variable YIELD at the corners of the experimental
design along with the confidence intervals. Note that you can also visualize the design in a
three-dimensional display using the Cube plot of predicted means option (assuming that
you have at least 3 factors). Return to the results dialog.

An alternative way of presenting the effects graphically is with a Pareto chart. Click the
Pareto chart of effects button.

g% Pareto Chart of Standardized Effects; Variable: ... [lj[=] E3

Paratn Chart of Standandizad Ellac; Variahle: YIELD
2% 2-0) dessigr; M S Resichual=4 X05

DAE YIELD

2 S35

NN

{1} TIE -1 T2

(HDEGREES 12

\

Elacd Exfirmats | Abhaaibes VValis)

The Pareto chart shows the absolute values of the (standardized) individual effects and
ranks them in order of magnitude. An additional vertical line indicates the p-level for
significance (in this case 0.05). Note that the default significance level can be controlled
via the Alpha (highlighting) edit field in the results dialog on the ANOVA/Effects tab. As
none of the bars representing the individual effects cross the significance level line, our
previous findings that none of the effects are significant are confirmed.

Although we could now plot the current model in a Contour or Surface Plot and use the
current model to predict the response variable for individual factor level combinations, we
will not do so for now (we will later return to this example analysis). Instead, we will



13.

14.

conclude the analysis by evaluating the goodness of fit of the current model. Return to the
results dialog. Click the Predicted vs. observed values button on the Prediction & profiling
tab to produce a scatterplot such as in the next illustration:

mie Observed vs. Predicted Yalues™ [_ |O]

Ohzerved vz, Predicted Values

277(2-00 design; M5 Residual=4.205
D& ¥IELD

Predicted “alues

76 78 &l a2 ] a8 a3 al a2 ]

Ohserved Values

As you can see, the points follow approximately a straight line indicating a satisfactory fit
of the current model. Now, return to the results dialog.

An important assumption in analysis of variance and regression is the normality of the
residuals. Thus, we can use a probability plot of residuals (on the Residual plots tab) to
verify this assumption. However, due to the small number of observations in our design,
such a plot is not very meaningful for the current example.

If you are familiar with the concepts of regression analysis, you may want to verify the
model assumptions. The following list contains a summary of the most important
assumptions that should be met:

a. Normal distribution of residuals (use normal probability plots or histograms of
residuals)

b. Equal variances of residuals (plot predicted values vs. residuals and look for
unexpected relationships between predicted and residual values)

c. Independence/no serial correlation of residuals (plot residuals vs. case numbers and
look for non-random patterns)

d. Linear model specification (plot predicted values vs. residuals and look for non-
random patterns)

e. No outlier observations that unduly influence the results (look for large values in the
extended residual statistics such as deleted residuals, DFFITS, Cook’s distance,
leverage)

Select the Residual plots tab and the Review/save residuals tab to view extensive residual
plots and statistics that will allow you to verify these assumptions.



=il Analysiz of an Experiment with Two-Level Factors: 2level

DEZIGH STMMARY (standard desiogm): Z**(£-0), Besolution R=FULL
Number of factors (independent wariables): Z

Mumber of runs (standard experiment): 4

Total number of runs in experiment: & [Z center points)
Number of blocks: 1

Fractional replications: Full factorial

Mumber of replications: 0 - 1

Y ariabile: IYIELD | [ Bintiesults [ I Al varables &
Guick I Model | Design | ANOWA/E ffects I Means Cancel |

Review/zave residuals Residual plots | Bowx-Cox I Frediction & profiling
[® Options = |

£ Plot raw residuals £~ Plot studentized deleted residuals

— Histograms — Scatterplats
Histogram of reziduals | Fredicted vz, residual values

@ Histogram of predicted walues | Observed vs. predicted values |

— Probability plots of residuals D)ot s [ ) el

Besiduals vs. deleted residuals |

Marmal plat |
Half-narmal plot | Residuals v&. case numbers |
Detrended normal plot | These rezults are forthe cument model; you can

change the madel (add or remowve interaction
effects) on the Madel tab.

Also, on the Box-Cox tab, you have options for Box-Cox transformation of the dependent
variable. This type of transformation can be used to overcome many of the violations of
the model assumptions that arise from non-normality and non-constant variance in the
distribution of the residuals. However, we will not examine the options in this dialog in
detail.

To summarize our findings, we can say that given the current model, none of the effects are
significant. However, the magnitude of the curvature effect can be interpreted as an indication
of a non-linear relationship between the variables, and the analysis of the current design may
not be able to sufficiently model this relationship. We will later return to this example in the
context of Central Composite Designs.



