Problem 1

Data points:

x	y
0.6	5.16
1.4	7.33
2.5	9.24
3.7	11.05
4.8	13.34
5.6	15.66

questions:

1. Calculate the residual mean square. (0.1688)
2. Construct a 90% confidence interval for the slope.
3. Test whether the intercept is 0 . (At $\alpha=5 \%$ level.)
4. Test whether the intercept is 4 . (At $\alpha=5 \%$ level.) $(t 0=0.504, p=0.641$)
5. In what interval can you find the point of the true regression line at $x=3$ with 99% probability? $(9.33,10.87)$
6. In what interval can you find a new measurement at $\mathrm{x}=2$ with 90% probability? (7.15, 9.09)

	Param.	Std.Err	t	p	$-95,00 \%$ Cnf.Lmt	+95,00\% Cnf.Lmt
Intercept	4,170	0,337	12,38	0,00025	3,23	5,11
x	1,976	0,094	20,97	0,00003	1,71	2,24

Problem 2

Data points:

x	y
1.3	13.7
2.6	10.5
3.3	9.9
4.9	7.4
5.5	5.1

questions:

1. Calculate the residual mean square. (0.3582)
2. Construct a 99% confidence interval for the intercept. $(12.02,19.88)$
3. Can we say that the slope is -2 ? (At $\alpha=5 \%$ level.)
$(\mathrm{H} 0:$ beta $=-2, \mathrm{t} 0=0.67, \mathrm{p}=0.551)$
4. In what interval can you find the point of the true regression line at $\mathrm{x}=5$ with 95% probability? (5.337, 7.716)
5. In what interval can you find a new measurement at $x=2$? (At $\alpha=5 \%$ level.) $(9.94,14.43)$

Effect	Param.	Std.Err	t	p	$\begin{aligned} & -95,00 \% \\ & \text { Cnf.Lmt } \end{aligned}$	$\begin{gathered} +95,00 \% \\ \text { Cnf.Lmt } \end{gathered}$
Intercept	15,95	0,67	23,71	0,0002	13,81	18,09
x2	-1,88	0,18	-10,74	0,0017	-2,44	-1,33

Problem 3

8 jams were made with different cooking parameters. The quality of the jams was measured on a 0 to 100 point scale. The table below contains the cooking parameters and the quality of the result.

temperature		$120^{\circ} \mathrm{C}$		$180^{\circ} \mathrm{C}$	
cooking time		1 hrs	2 hrs	1 hrs	2 hrs
sugar	20 g	35	28	45	42
	50 g	44	39	48	44

Questions

1. Calculate all the effects.
2. Draw a main effect plot for cooking time. What can you deduct?
3. Draw an interaction plot for sugar/cooking time. What can you deduct?
4. Draw an interaction plot for cooking time/temperature. What can you deduct?
5. Draw a Pareto chart. Then based on it reduce the model.
6. Using the reduced model, make an estimate for the measurement at 2 hrs cooking time, 25 g sugar and $160^{\circ} \mathrm{C}$ temperature.

Solution

sugar	temp	time	y
20	120	1	35
20	120	2	28
20	180	1	45
20	180	2	42
50	120	1	44
50	120	2	39
50	180	1	48
50	180	2	44

1. Calculate all the effects.

Factor	Effect
(1)sugar	6,25000
(2)temp	8,25000
(3)time	$-4,75000$

2. Draw a main effect plot for cooking time. What can you deduct?

With longer cooking time the jam becomes less good. If the cooking time is increased from 1 hour to 2 hours the quality drops with 4.75 points.
3. Draw an interaction plot for sugar/cooking time. What can you deduct?

There is no interaction between the the amount of sugar and the cooking time. No matter how long is the cooking time (1 or 2 hours) adding more sugar (50 instead of 20) would improve the quality of the jam with the same amount.
4. Draw an interaction plot for cooking time/temperature. What can you deduct?

There is no interaction between the the temperature and the cooking time.
5. Draw a Pareto chart. Then based on it reduce the model.

The reduced model:
$\hat{Y}=40.625+3.125 x_{1}+4.125 x_{2}-2.375 x_{3}-1.875 x_{1} x_{2}$
6. Using the reduced model, make an estimate for the measurement at 2 hrs cooking time, 25 g sugar and $160^{\circ} \mathrm{C}$ temperature.
$\hat{Y}=40.625+3.125 * 0+4.125 * 0-2.375 * 1-1.875 * 0 * 1=38.25$

Problem 4

The table below contains the design and the results of a set of expetiments. (The conversion is the outcome.)

pressure $($ bar $)$	temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	conversion $(\%)$
0.5	20	5	2.76
1	20	5	26.79
0.5	30	5	38.90
1	30	5	31.37
0.5	20	7	3.08
1	20	7	26.39
0.5	30	7	39.10
1	30	7	30.38

Questions:

1. Calculate all the effects and coefficients.
2. Draw a main effect plot for the pressure. What can you deduct?
3. Draw an interaction plot for the temperature/pressure. What can you deduct?
4. Draw a Pareto chart. Then based on it reduce the model.
5. Using the reduced model, make an estimate for the conversion at $0.6 \mathrm{bar}, 2{ }^{\circ} \mathrm{C}$ and 5.5 pH .

Solution

1. Calculate all the effects and coefficients.

Factor	Effect	Coefficient
Intercept		24,85
(1)Pressure	7,8	3,89
(2) temp	20,2	10,09
$(3) \mathrm{pH}$	$-0,2$	$-0,11$
1 by 2		$-7,95$
1 by 3		$-0,24$
2 by 3		$-0,09$
$1 * 2 * 3$		$-0,06$

2. Draw a main effect plot for the pressure. What can you deduct?

The conversion is higher at higher pressure. If the pressure is increased from 0.5 bar to 1 bar the conversion increases with 3.89\%.
3. Draw an interaction plot for the temperature/pressure. What can you deduct?

There is interaction between the temperature and the pressure.
4. Draw a Pareto chart. Then based on it reduce the model.

The reduced model:
$\hat{Y}=24.8+3.9 x_{1}+10.1 x_{2}-7.9 x_{1} x_{2}$
5. Using the reduced model, make an estimate for the conversion at 0.6 bar, $29^{\circ} \mathrm{C}$ and 5.5 pH . $\hat{Y}=24.8+3.9 * \frac{0.6-0.75}{0.25}+10.1 * \frac{29-25}{5}-7.9 * \frac{0.6-0.75}{0.25} * \frac{29-25}{5}=34,3$

