Regression analysis

Linear regression - fitting a straight line

Two Concepts for the role of the function

1. curve (interpolating function) is to be fitted to represent properly the measured data
2. causalistic model is to be fitted, with physically sound parameters, thus the model have extrapolation ability as well

Model

X is the independent varable
Y is the true (theoretical or expected) value of the dependent variable
Y is a function of $x \quad Y(x)=\varphi(x ; \alpha, \beta, \gamma, \ldots)$
E.g. for linear regression

$$
Y(x)=\beta_{0}+\beta x
$$

$y=Y+\varepsilon \quad y$ is the measured dependent variable value
ε is the measurement error

$$
E(\varepsilon)=0 \quad \operatorname{Var}(\varepsilon)=\sigma_{y}^{2}
$$

Assumptions

$Y(x)=\varphi(x ; \alpha, \beta, \gamma, \ldots)$ is the known or assumed functional relationship with $\alpha, \beta, \gamma, \ldots$ parameters
$\operatorname{Var}(\varepsilon)=\sigma_{y}^{2}$ is constant
the ε_{i} experimental errors committed at different i measurement points are independent of each other y at all x values follows normal (Gauss) distribution that is the ε_{i} experimental errors $\sim N\left(0, \sigma^{2}\right)$
x is free of error

Fitting a straight line if $\sigma_{y}^{2}=$ const

The least squares estimation criterion:

$$
\begin{aligned}
& \phi=\sum_{i}\left(y_{i}-\hat{Y}_{i}\right)^{2}=\min \\
& Y_{i}=\beta_{0}+\beta x_{i}=\alpha+\beta\left(x_{i}-\bar{x}\right) \quad \beta_{0}=\alpha-\beta \bar{x} \quad \text { intercept } \\
& \hat{Y}_{i}=b_{0}+b x_{i}=a+b\left(x_{i}-\bar{x}\right) \quad b_{0}=a-b \bar{x} \\
& \qquad \phi=\sum_{i}\left(y_{i}-b_{0}-b x_{i}\right)^{2}=\min
\end{aligned}
$$

Fitting a straight line if $\sigma_{y}^{2}=$ const

The normal equations:
$\frac{\partial \phi}{\partial b_{0}}=-2 \sum\left[y_{i}-b_{0}-b x_{i}\right]=0$
$\frac{\partial \phi}{\partial b}=-2 \sum\left[y_{i}-b_{0}-b x_{i}\right] x_{i}=0$

After rearranging
$\sum y_{i}=n b_{0}+b \sum x_{i}$

As $\quad \sum x_{i} \neq 0$
the b_{0} and b estimators are not independent
$\sum y_{i} x_{i}=b_{0} \sum x_{i}+b \sum x_{i}^{2}$

Fitting the model in the form $\quad Y_{i}=\alpha+\beta\left(x_{i}-\bar{x}\right)$
$\frac{\partial \phi}{\partial a}=-2 \sum\left[y_{i}-a-b\left(x_{i}-\bar{x}\right)\right]=0$
$\frac{\partial \phi}{\partial b}=-2 \sum\left[y_{i}-a-b\left(x_{i}-\bar{x}\right)\right]\left(x_{i}-\bar{x}\right)=0$
Rearranging (normal equations):
$\sum y_{i}=n a+b \sum\left(x_{i}-\bar{x}\right)$
$\sum y_{i}\left(x_{i}-\bar{x}\right)=a \sum\left(x_{i}-\bar{x}\right)+b \sum\left(x_{i}-\bar{x}\right)^{2}$
Here the a and b estimators are independent as

$$
\begin{gathered}
\sum\left(x_{i}-\bar{x}\right)=0 \\
\bar{x}=\frac{\sum x_{i}}{n}
\end{gathered}
$$

$$
\sum y_{i}=n a \quad \sum y_{i}\left(x_{i}-\bar{x}\right)=b \sum\left(x_{i}-\bar{x}\right)^{2}
$$

a and b are obtained independently of each other from the two normal equations

$$
\begin{array}{ll}
a=\frac{\sum_{i} y_{i}}{n} & b=\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
\hat{Y}=a+b\left(x_{i}-\bar{x}\right) & E\left(\hat{Y}_{i}\right)=Y_{i}=\alpha+\beta\left(x_{i}-\bar{x}\right)
\end{array}
$$

Checking the assumptions

Residuals with respect to Y (or estimated Y or x): change of the variance

