Absorption

Béla Simándi, Edit Székely Some of the slides are from Transport Processes and Separation Process Principles by Christie John Geankoplis.

Absorption

- In absorption a gas mixture is contacted with a liquid solvent to remove one or more components from the gas phase.
- The opposite of absorption is stripping, where in a liquid mixture is contacted with a gas to remove components from the liquid to the gas phase.
- Distinction should be made between physical absorption and chemical absorption.

Concentration profile of a solute A diffusing through two phases.

$$N_A = K_y \Big(y_{AG} - y_A^* \Big)$$

, where K_y is the overall trasfer coefficient (mol/(m²s)) y_A^* would be equilibrium with x_{AL} .

Single-stage equilibrium process

Figure 10.3-1. Single-stage equilibrium process.

Total balance equation

 $L_0 + V_2 = L_1 + V_1$

Component balance equation

$$L_0 \cdot x_0 + V_2 \cdot y_2 = L_1 \cdot x_1 + V_1 \cdot y_1$$

Transport Processes and Separation Process Principles by Christie John Geankoplis. Copyright 2003 Pearson Education, Inc., Publishing as Prentice Hall PTR. All rights reserved.

Figure 10.3-3. Number of stages in a countercurrent multiple-stage contact process.

Transport Processes and Separation Process Principles by Christie John Geankoplis. Copyright 2003 Pearson Education, Inc., Publishing as Prentice Hall PTR. All rights reserved.

Balance equations

 L_0

$$L_0 + G_{N+1} = L_N + G_1$$

· $x_{i0} + G_{N+1} \cdot y_{iN} = L_N \cdot x_{iN} + G_1 \cdot y_{i1}$ $i = 1, 2, \dots, I$

L and G are constant along the column. $y_{N+1} >> y_1$ $x_N >> x_0$

This straight line is the operating line.

Figure 10.3-3. Number of stages in a countercurrent multiple-stage contact process.

Given: y_1 \mathcal{Y}_{N+1} \mathcal{Y}_{0} Result: N L or x_N can be estimated If L/G is large: N decreases x_N decreases If L/G is small: N increases x_N increases

Mole fraction, x

Figure 10.6-8. Theoretical number of trays for absorption of SO₂ in Example 10.6-2.

Minimum slope of the operation line (minimum liquid to gas ratio)

Transport Processes and Separation Process Principles by Christie John Geankoplis. Copyright 2003 Pearson Education, Inc., Publishing as Prentice Hall PTR. All rights reserved.

Balance equations, simplified

x - x [kmol absorptivum/solute]
$x = \frac{1}{1-x} \begin{bmatrix} -x \\ -x \end{bmatrix}$ kmol solvent
$Y = \frac{y}{1 - y} \left[\frac{\text{kmol absorptivum/solute}}{\text{kmol absorptivum/inert gas}} \right]$
$\dot{L} = L \cdot (1 - x)$ solute-free solvent
$G' = G \cdot (1 - y)$ solute-free gas
Form of Henry's law:
$\frac{Y}{1+Y} = \text{He'} \cdot \frac{X}{1+X}$
Form of total component balance equation:

$$\dot{L} \cdot X_0 + \dot{G} \cdot Y_{N+1} = \dot{L} \cdot X_N + \dot{G} \cdot Y_1$$

Operating line

Component balance equation of the control area:

$$\dot{L} \cdot X_{m} + G' \cdot Y_{N+1} = \dot{L} \cdot X_{N} + G' \cdot Y_{m+1}$$

$$Y_{m+1} = \frac{L'}{G'} X_m - \frac{L'}{G'} \cdot X_N + Y_{N+1}$$

This straight line is the operating line.

Analytical determination of the number of theoretical stages Lo, xo (L and G are constants)

• If both the operationg line and the equilibrium curve are linear:

– L/G is constant

- y=m·x $G \cdot (y_2 - y_1) = L \cdot (x_1 - x_0)$ $y_2 = y_1 + L/G \cdot (x_1 - x_0)$ $y_1 = m \cdot x_1 \rightarrow x_1 = \frac{y_1}{m} \text{ and } x_0 = \frac{y_0}{m}$, where y_0^* is hypotetical concentration, in equilibrium with x₀. Introducing the absorption coefficient: $A = \frac{L}{m}$

 $\begin{array}{c|c}
m \\
m \\
m+1 \\
\hline
G_{N+1} \\
y_{N+1} \\
\hline
L_N \\
x_N
\end{array}$

G1 , y1

1

n

Analytical determination of the number of theoretical stages $y_2 = y_1(1+A) - A \cdot y_0^*$

Component balance equation of the second thoretical stage:

$$G \cdot (y_3 - y_2) = L \cdot (x_2 - x_1)$$

$$y_3 = y_2 + L/G \cdot \left(\frac{y_2}{m} - \frac{y_1}{m}\right) = y_2 + \frac{L}{G \cdot m}(y_2 - y_1)$$

$$= y_2(1 + A) - A \cdot y_1$$

$$y_3 = \left[y_1(1 + A) - A \cdot y_0^*\right](1 + A) - A \cdot y_1$$

$$y_3 = y_1(1 + 2A + A^2 - A) - (A + A^2) \cdot y_0^*$$

might be continued

Analytical determination of the number of theoretical stages

$$y_{N+1} = y_1 \left(1 + A + A^2 + A^N \right) - y_0^* \cdot \left(A + A^2 + A^N \right)$$
$$y_{N+1} = y_1 \frac{1 - A^{N+1}}{1 - A} - y_0^* \cdot A \frac{1 - A^N}{1 - A}$$

$$y_{N+1} = y_1 \frac{1 - A^{N+1}}{1 - A} - m \cdot x_0 \cdot A \frac{1 - A^N}{1 - A}$$

$$\frac{y_{N+1} - y_1}{y_{N+1} - m \cdot x_0} = \frac{A^{N+1} - A}{A^{N+1} - 1}$$
 Kremser (1930)
Brown-Sauders (1932)

$$N = \frac{\log_{10} \left[\frac{y_{N+1} - m \cdot x_0}{y_1 - m \cdot x_0} \cdot \left(1 - \frac{1}{A}\right) + \frac{1}{A} \right]}{\log_{10} A}$$

when A=1 $N = \frac{y_{N+1} - y_1}{y_1 - m \cdot x_0}$

Typical locations of operating line at absorption and at stripping

Figure 10.6-10. Location of operating lines: (a) for absorption of *A* from *V* to *L* stream; (b) for stripping of *A* from *L* to *V* stream.

Transport Processes and Separation Process Principles by Christie John Geankoplis. Copyright 2003 Pearson Education, Inc., Publishing as Prentice Hall PTR. All rights reserved.

Figure 10.6-11. Operating line for limiting conditions: (a) absorption; (b) stripping.

Differential columns

dH is the differential height of column (m)

$$d(G \cdot y) = K_y a(y - y^*) A \cdot dH$$

$$d(G \cdot y) = d\left(G' \cdot \frac{y}{1-y}\right) = G'd\left(\frac{y}{1-y}\right) = G'\frac{dy}{(1-y)^2} = G\frac{dy}{1-y}$$

$$Y = \frac{y}{1 - y} \left[\frac{\text{kmol absorptivum/solute}}{\text{kmol absorptivum/inert gas}} \right]$$

$$G' = G(1 - y)$$

Modified component balance equation

$$G\frac{dy}{1-y} = \frac{K_y \cdot a \cdot (1-y)_{av} \cdot (y-y^*) \cdot A \cdot dH}{(1-y)_{av}}$$
$$dH = \frac{G}{K_y a (1-y)_{av} A} \cdot \frac{(1-y)_{av}}{(1-y) \cdot (y-y^*)} dy$$

$$\int_{0}^{H} dH = \int_{y_{0}}^{y_{1}} \frac{G}{K_{y}a(1-y)_{av}A} \cdot \frac{(1-y)_{av}}{(1-y)\cdot(y-y^{*})}dy$$

Each parameters on the right side are dependent on concentration, thus numerical integration is needed.

Assumptions: $K_y a(1-y)_{av}$ is independent of concentration K_y is proportional to G^{0,8}

Thus: $G/G^{0,8}$ is roughly independent from concentration.

$$H = \frac{dy}{1-y} = \frac{G}{K_{y}a(1-y)_{av}A} \int_{y_{0}}^{y_{1}} \frac{(1-y)_{av}}{(1-y)\cdot(y-y^{*})} dy$$

Transfer Units

 $H = NTU_G \cdot HTU_G$

$$\frac{\left(1-y\right)_{av}}{\left(1-y\right)} \approx 1$$

$$H = \frac{G}{K_{y}a(1-y)_{av}A} \int_{y_{0}}^{y_{1}} \frac{1}{(y-y^{*})} dy$$

$$HTU_{G} = \frac{G}{K_{y}a(1-y)_{av}A}$$
$$NTU_{G} = \int_{y_{0}}^{y_{1}} \frac{1}{(y-y^{*})}dy$$

height of a transfer unit (m)

number of transfer units

Absorbers

Absorbers

spray column

bubble column

plate-type absorbers

Figure 10.6-3. Packed tower flows and characteristics for absorption.

Random packings

Figure 10.6-4. Typical random or dumped tower packings: (a) Raschig ring; (b) Berl saddle; (c) Pall ring; (d) Intalox metal, IMTP; (e) Jaeger Metal Tri-Pack.

Transport Processes and Separation Process Principles by Christie John Geankoplis. Copyright 2003 Pearson Education, Inc., Publishing as Prentice Hall PTR. All rights reserved.

Typical applications

- separation of gases
 - production of HNO₃

Typical applications

- separation of gases
 - production of HNO₃
 - separation of produced gases
 - fractionation of hydrocarbons
 - sweetening of natural gases (acid gas removal)
- waste gas purification

Typical applications, waste gas purification

- removal of gaseous pollutants, such as hydrogen halides, SO₂, ammonia, hydrogen sulphide
- or volatile organic solvents
- removal of CO_2 or H_2S from natural gas
- but also removal of dust with certain types of scrubbers

Typical absorbents in waste gas purification

- water, to remove solvents and gases such as hydrogen halides or ammonia
- alkaline solutions, to remove acid components such as hydrogen halides, sulphur dioxide,
- phenols, chlorine; also used for second-stage scrubbing to remove residual hydrogen halides after first-stage aqueous absorption; biogas desulphurisation

Typical absorbents in waste gas purification

- alkaline-oxidation solutions, i.e. alkaline solutions with sodium hypochlorite, chlorine dioxide, ozone or hydrogen peroxide
- sodium hydrogensulphite solutions, to remove odour (e.g. aldehydes)
- Na₂S₄ solutions to remove mercury from waste gas
- acidic solutions, to remove ammonia and amines
- monoethanolamine and diethanolamine solutions, suitable for the absorption and recovery of hydrogen sulphide.

THANK YOU!